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Abstract— Super-resolution ultrasound imaging has evolved 

using image analysis algorithms. However, the images used are not 

generated with beamformers that are designed for single particle 

imaging, but rather for anatomy that provide continuous features 

(eg. delay and sum). In order to compare image- and signal- 

derived localisation accuracies we used multi-focal imaging 

combined with the simple metric of sharpness. A 7 MHz (λ=212 

μm) linear array with 192 elements is used to scan a phantom that 

is composed of a thin wire. The average axial localisation accuracy 

using the sharpness method on the raw signal is ≈ 0.01λ while the 

centre of mass best measurement on image data provided ≈ 0.06λ. 

It is concluded that image derived localisation is compromised by 

the process that generates the image. It is therefore suggested that 

super-resolution imaging will benefit from alternative 

beamforming methods that are designed to enhance single particle 

imaging.   

Keywords— Axial localisation, beamforming, multiple focusing, 

microbubble, normalised sharpness, ultrasound imaging  

I. INTRODUCTION  

In ultrasound imaging, the interference of emitted wavefronts 

reduce the focusing capability of an aperture. Small objects can 

be resolved as in all wavefront based sensing methods, only to 

the diffraction limit and in combination with the duration of 

transmitted pulses. Super-resolution techniques are well-

developed in other fields of sensing [1]  including radar [2], 

astronomy [3], and optical microscopy [4]. Sub-diffraction 

ultrasound imaging is based on the utilization of contrast 

microbubbles due to their high scattering cross-section [5]. 

Subsequently, a n d  a s  m i c r o b u b b l e s  t r a v e l  w i t h i n  t h e  

v a s c u l a r  b e d ,  super-resolution images of vascular structure 

has been made possible providing at least one order of 

magnitude resolution gains [6-8]. However, the image 

formation used in ultrasound equipment is designed for 

structural/anatomical imaging. The ultrasound super-resolution 

techniques above are applied to already beamformed images. 

The highly variable PSF, the noise, and a number of artefacts 

encountered in the ultrasound image may limit the final 

resolution.  

Thus, it is important to investigate the performance of 

super-resolution methods that utilize raw data and compare 

these with derivations that originate from image data. The 

current paper investigates this using a sharpness derived 

methodology [9-12]. 

 

II. METHODS 

The metric of image sharpness can be seen as a descriptor of 

field aberration. It maximizes at minimal aberration, and since 

it is dominated by defocus, it presents increasingly lower 

values with increasing defocus. A simplified version of the 

sharpness metric is calculated from a small region of interest 

(ROI) including the main-lobe of a single PSF, by: 

 

 

𝑆 = ∑ 𝐸𝑞
4/(∑ 𝐸𝑞

2)2𝑄
𝑞=1

𝑄
𝑞=1                 (1) 

 

where S is the normalised ultrasound sharpness measured from 

the squared envelope detected data amplitudes Eq2 (signal-

derived sharpness), of Q samples (q = 1, . . . , Q). Alternatively 

the sharpness can be measured from the recorded pixel 

intensities of the saved images (image-derived sharpness), 

where the intensity of each pixel is proportional to the squared 

envelope amplitude. The region of interest (ROI) for these 

calculations in both cases is e f fec t ive ly a box around 

the PSF centre.  

The processing methodology is detailed in [9]. The 

beamforming used is that of simple delay and sum with a single 

receive focus. The data are processed three times for three 

different receive foci. The calculation of sharpness at each 

depth and for each scatterer position results in overlayed 

‘sharpness curves’ as shown in Fig.1. The depth estimation uses 

this result in order to estimate depth in an inverse process. 
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 The calculation of three sharpness values from each point 

source is fed into a maximum likelihood estimator [13] which 

then provides an output in the form of a probability density 

function that its maximum value is the axial location of a single 

point source. The accuracy of the normalised sharpness method 

is equivalent to the depth deviation of the method’s z-estimate 

to the known scatterer position, or ddev in short.  

For the experimental verification the wire phantom setup 

in [9] was used. Briefly, a metal wire with 0.07 mm 

diameter was clamped inside a water tank and its axial 

movement was controlled by a  positioning setup (AIMS III, 

Onda Corporation, Sunnyvale, CA). The ultrasound data 

were captured by the 1024 channel experimental ultrasound 

scanner SARUS (Synthetic Aperture Real-time Ultrasound 

System) [14] and using a BK8804 linear array (BK Ultrasound, 

Herlev, Denmark). Plane wave transmission was performed 

and RF data from one unfocused emission were acquired in 

receive. For each acquisition the data were beamformed in 

three different foci at 38 mm, 40 mm, and 42 mm.  

In order to compare the results the commonly used centre 

of mass (COM) approach was used on the generated images 

and using the standard Matlab (The MathWorks, Inc., Natick, 

MA, USA) function regionprops. 
 

 

III. RESULTS 

In Fig. 1, the measured mean sharpness was plotted over 

axial displacement for the RF data, corresponding to the left 

side y-axis. The RF data and image derived depth deviation are 

overlayed on the same figure and the respective y-axis text is 

on the right side. The image-derived sharpness processing 

resulted in an average ddev that varied between 22.2±17.3μm 

(~0.10λ) and 26.3±22.7μm (~0.12 λ), depending on the depth 

range that was being examined. The displacement edges where 

the uncertainty of the measured sharpness becomes higher, are 

usually excluded from all the average ddev calculations. These 

were improved by a factor of ~10 for the signal derived 

sharpness processing. The ddev varied to between 2.3±1.8μm 

and 2.6±2.1μm (~0.01 λ). The COM provided a ddev that 

ranged between 13.3±6.7μm (~0.06 λ) and 14.2±8.2μm (~0.07 

λ). These numbers were an almost 2-fold improvement 

compared to those provided by the image-based sharpness. On 

the other hand, the COM based axial localisation was 

outperformed by the signal-derived sharpness processing by at 

least a factor of 6.5. Note, that the COM calculation was 

threshold dependent. Increasing or reducing the intensity 

threshold resulted in reduced localisation accuracy that 

reached values up to 44 μm (or ~0.207 λ). Fig. 2 shows how 

the three measurements vary across the depth that is covered 

by the three sharpness curves. Overall, the ddev values were 

similar to those derived by the simulations [10]. 

 

IV. DISCUSSION 

The sharpness method provides consistently improved axial 

localisation precision, which is at least 2 orders of magnitude 

compared to the wavelength used (220 μm). Here, the raw data 

derived provided a near 10-fold improvement in axial 

localisation accuracy compared to the image derived data. The 

image formation includes compression, interpolation, time-gain 

compensation and display conversion which may contribute to 

loss of information. This explains the superiority of the signal-

derived sharpness processing in axial localisation accuracy 

compared to the COM localisation by at least 5 times.  

The normalised sharpness method, similar to the techniques 

that improve lateral [15,16]  resolution, may add to the existing 

super-resolution methods. Current super-resolution ultrasound  

 
 
Fig. 1. Normalised Sharpness is plotted from all positions using the three foci. The sharpness is linked with axial position, and a single value would give an ambiguous dissemination of 

position. The 3 sharpness measures for a single axial position (a typical example is shown with the 3 circles at −1.5 mm) are combined into a maximum-likelihood function that derives 

the scatterer position with high accuracy. 
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is heavily based on image processing. It has been accomplished 

either by identifying the PSF COM [17], [18] or by fitting three 

dimensional Gaussian functions [3], [19] to ultrasound 

reconstructed data to approximate the PSF. Note that both  

methods provide similar results and are dependent on the SNR. 

Given that current imaging is not designed to enhance point 

scatter localisation, the sharpness method, although limited to 

the axial direction, may be a signal-based approach that may 

provide a new type of image data that are specifically designed 

for point scatter localisation and that can work well as an 

adjunct to the already existing image based methods. 

 

 

V. CONCLUSION 

Sharpness-based localisation is an alternative to classic 

image processing techniques for scatterer localisation in the 

axial direction. It was explained that the sharpness-based 

method predicts a depth estimate and its difference from the 

true scatterer position demonstrates its accuracy. The method 

can be implemented both using image and signal data with the 

signal-based implementation outperforming the image-based 

one or the conventional center of mass localisation which is also 

image-based. Changes in the scan grid while saving log-

compressed ultrasound images and other intermediate 

processes prior to image formation alter the original signal 

information and compromise the overall performance of the 

method when using image data. Such details may be significant 

when reconstructing micro-vessels of the order of tens of 

micrometres in diameter. 
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