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Abstract—In recent years ultrasound imaging has achieved
an increasing acceptance across medical specialties. For this
reason new techniques keep being tested in the field. Among
these techniques we found High Dynamic Range (HDR) imaging
where the range of luminosity levels is augmented by combining
multiple expositions of a scene. Current ultrasound techniques
present limitations that are not compatible with traditional
implementations of HDR imaging. In this paper, we asses the
use of a deep learning (DL) neural network (U-net architecture)
on predicting HDR values from low dynamic range (LDR) input
images. In addition, an image acquisition pipeline to create the
data set from which the network was trained is described. We
demonstrated that this type of networks can be trained to predict
HDR out from a minimal number of input expositions, while the
obtained results showed to be comparable with more traditional
approaches.

Index Terms—Deep learning, Ultrasound, High Dynamic
Range

I. INTRODUCTION

High Dynamic Range (HDR) imaging is a technique in-
spired from computational photography, where multiple im-
ages of the same scene are acquired with a different exposure
and combined to generate a final image where each luminance
level can be observed [1]. Raw ultrasound (US) signal natively
contains a high dynamic range. To be able to display the image
on commercial monitors, a logarithmic compression is applied
to the raw input. This conversion thus reduces the range of
tones that can be used to represent and differentiate between
objects or tissue containing a wide echogenicity range [2].

Besides pre- and post-processing algorithms, in recent years,
multiple DL approaches have been tested on US imaging
for a variety of applications [3]. Nevertheless, current US
techniques present limitations that are not compatible with
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traditional implementations of HDR. For instance, HDR recon-
struction will require a series of images where both US probe
and target remain stable for relative long periods of time. At
the same time, the necessity for exposition variation hinder
HDR computation to be performed in real time. Finally the
absence of research applying HDR to US imaging translates
into a lack of images that could be collected from different
sources for their later integration into problem specific datasets
for DL and ML algorithms.

The main contributions of this paper can be summarized as:

1) The construction of a in vivo US training dataset com-
bining low dynamic range (LDR) and HDR images
acquired at different exposures.

2) The augmentation of an LDR-HDR US dataset from
previously acquired single-exposure images, artificially
compressed to have enough expositions for their HDR
computation.

3) The implementation and evaluation of a convolutional
neural network (CNN), able to reconstruct HDR infor-
mation from a minimum number of input expositions.

II. RELATED WORK

US imaging works under the principle of sound wave scat-
tering and propagation. Mechanical waves such as US waves
propagate along a longitudinal path. As US waves penetrate
the body, they exert pressure over the different tissues they
encounter. Different tissues present different impedance values
Z, resulting in a variance in US speed across a tissue.

On the absence of a wave it can be said that the acoustic
pressure p is zero. For longitudinal waves, the underlying
particle velocity v can be expressed as:

p=vZ (1)
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Where Z is called the characteristic impedance described by
the pressure and the speed of sound c at different materials:

Z = pc 2)

The pressure of a scattered wave by a target can be
computed by:

—pa (d+r

Re teltin) (t_ d+r> 3)
T &

Only the amplitude Ay will be a parameter intrinsic to an US
transducer. As illustrated by Equation 3, the rest of the terms
are specific to the media being imaged and are independent
of the US machine tunable parameters. With ¢ representing
the speed of sound, d the distance between the target and the
transducer, F' the acoustic envelope, r the radius from the
target, R the reflection coefficient, and pu, is the amplitude
attenuation factor. All this specific of the tissue in the wave
trajectory.

In traditional photography, the intensity of a pixel is de-
termined by a non linear relation between the radiance on a
scene and a camera intrinsic parameters [4]. When a camera
captures a scene, the amount of light captured by the camera
is known as dynamic range. The nonlinear relation between
intensity values and exposure is generally known as the camera
response function and explains a non-linear mapping of image
irradiance. This response function can be use as a mapping
function to compress irradiance values in a determined dy-
namic range to relative smaller range.

In recent years multiple studies have extended the analy-
sis on LDR-to-HDR conversion. For instance, HDR in ul-
trasound imaging is possible as the specific irradiance re-
sponse from various tissues are often source of either over-
or under-exposition [5]. In the same way similar domain
transformation problems have been approached by means of
CNNs [6]. Although approaches for DL-based HDR have been
attempted [7] [8] [9], literature on approaches to use this
technique for US imaging are so far sparse.

Ds (7’7 t) = AO

III. METHODS
A. Ultrasound HDR images computation

By taking certain restrictions into account, such as probe
position, depth, and frequency, a comparable response curve
can be obtained for US probes. By only varying signal
amplitude and capturing an image per amplitude value a probe-
specific response curve can be computed from US images.

Preparing US HDR images requires a minimum of expo-
sition using the approach proposed by Degirmenci et al [5]:
Fifteen images were taken by varying the acoustic power knob
on an Ultrasonix (Ultrasonix Medical Corporation, Richmond
BC, Canada) scanner with a linear array (L.14-5/38) as well
as a convex array (C5-2/60). For both probes a frequency of
6.6 MHZ was fixed, at a 5 cm depth. Other parameters such as
dynamic range and gain were fixed only during a single study,
but later modified between studies to obtain different response
curves for better dataset generalization. The in vivo targets
were placed in a container full of warm water and then fixed

in a position that assured minimum movement for the length
of the experiment. Fifteen images were taken corresponding
to 15 levels of acoustic power each power level was converted
to relative amplitude A, by computing:

Power

A, = 1072045 4

A sample of the recovered camera curve for one of the
test probes is shown in Figure 1. This process yielded two
tone-mapped LDR images and a HDR file containing the
whole range of the compressed images used. A tone-mapping
operation was needed to display an LDR version of the HDR
reconstruction that contained the highest (as possible) dynamic
range. Local versions of Reinhard and Durand operators were
computed for this purpose. By measuring the peak signal-to-
noise ratio as suggested in [5], these operators showed the
widest range of power levels on our experiments.
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Fig. 1. Probe recovered response curve.

The approach from Degirmenci et al. [5] using the MAT-
LAB (MathWorks, Natick, MA, USA) [10] HDRUS.m script
was modified to read batches of US studies of the Ultrasonix
scanner export format b8 and b32. A total of 32 in vivo
experiments where done following this method resulting in
480 LDR images of with multiple sizes no smaller than 400
x 400 pixels and 32 HDR files.

B. Synthetic intensity compression

At the present time HDR computation for US requires
a minimum of exposures, being the minimal number for
computation matter of experimentation and consideration for
the final application. For this reason, the following strategy
was adopted to synthesize a collection of images necessary
for neural network training.

Given a single in vivo US image acquired with optimal
settings (referred to as the 0 dB standard), two series of
seven images were generated with controlled power levels by
applying a known compression (respectively, decompression)
on the pixel values. This set of 15 input images was used
to construct the HDR ground truth label for network train-
ing, namely by performing the analytical HDR computation
method previously mentioned and validated. The results of
the described process are shown in Figure 2.

To change the dynamic range of an input image a map-
ping function that worked strictly as an increasing function
(when decompressing) or as a decreasing function (when
compressing) was required. These type of mapping functions
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Fig. 2. Artificial multi-exposure LDR set with tone-mapped versions of HDR on a baby doll (toy).
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Fig. 3. Probe recovered response curve.

are also known as anamorphic operators [11]. A “Raise-to-
Power” operator described by Equation 5 was chosen due to
its capacity of changing an image dynamic range while its
mapping operation can be described by an exponential curve.

Qi j) = cP(i, )" ®)

Here, P refers to the input image and () to the output
image. The term r represents the fix power operator which will
determine the operation as a compression for large values and a
decompression or gain operator for small r values, c represents
a scaling constant that takes into account the maximum and
minimum pixel value of the input image.

All collected images were obtained across two exter-
nal [12] [13] and one internal [14] US datasets. After manually
discarding images that were smaller than 224 x 224 pixels
and/or that contained annotations over the area of interest,
the overall size of the dataset was to 1901 “O dB” standards
images. Subsequently, processing these images with a known
compression, a total of 28,515 LDR images where obtained
(15 compressions per original image). Figure 3 shows the
mapping function for eleven values of r for each curve. As r
approaches smaller values, this type of operator performs less
efficiently. From this behavior we can safely assume that a
“Raise-to-Power” operator will increase contrast in areas with
high pixel values at cost of the contrast in low pixel values.

-HDR -Similarity
Loss Epochs Bz}tch Learning Train size | Validation size
size rate
MSE 40 15 0.0001 22815 5700
L1y Loss 64 15 0.001 22815 5700
ABLET

NETWORK PARAMETERS SUMMARY

C. Deep learning HDR

Our approach is based on the use of a U-net architecture [15]
due to its capacity to efficiently perform domain transfor-
mations. At the same time connections between the down
sampling and up sampling sections of the network facilitate
transfer and preservation of low- and high-level features.
Compared to approaches that produce visually convincing
results [6], U-net provides more predictable results between
iterations [16]. At the same time it does not require restrictions
on output intensity for training stabilization, which could result
on non-optimal HDR predictions.

In order to determine the ability of the network to predict
HDR values based on DLR inputs two different loss functions
where tested a mean square error (MSE) loss based on the
approach by Eilertsen et al. [8] and a combination of L1 loss
combined with a cosine similarity term (L1y) as suggested by
Marnerides et al in [7].

IV. RESULTS

The network was trained with a different loss function on
each setup. All experiments were done using 80% of samples
taken from the synthetic dataset (22, 815 training pairs). Eval-
uation of the model was performed using the remaining 20%
of data not seen during training (5, 700 samples). Every train
pair consisted of a HDR label and one of the 15 synthetic
expositions used to create the label. Concisely each label
was fed 15 times to the network with intend of training
the network to predict HDR from one input exposition. A
second data loader where each LDR set is combined into a
15 channel input vector is possible. This can be considered
as teaching the network to predict HDR values from camera
functions since every set r was different when compression
was applied, althougt more experimentation is needed in order
to provide consistent results. Details on training parameters are
summarized on Table I.
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To assess the quality of the predicted HDR images, a
modification of peak signal-to-noise ratio (PSNR) that takes
human visual system (HVS) contrast perception into account
was used [17]. The PSN-HVS was computed for one sam-
ple per epoch consisting of Input, Ground truth, and
Prediction. Two values were obtained, the first from com-
paring the input image to the ground truth HDR. The second
by comparing the input to the predicted HDR. The PSNR-HVS
were averaged by the total number of measured samples (same
value as number of epochs) and are summarized in Table II.

Experiment Input - Ground Truth HDR | Input - Prediction HDR
PSNR-HVS PSNR-HVS
MSE loss 9.4715 dB 9.5486 dB
L1g Loss 8.8698 dB 79117 dB
TABLE I

PEAK SIGNAL-TO-NOISE RATIO SCORE SUMMARY

Fig. 4. Intensity distribution histogram for randomly picked sample trained
with L1y Loss. Left: Input, Center: Label HDR, Right: Reconstruction HDR.
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Fig. 5. Intensity distribution histogram for randomly selected sample trained
with the MSE loss. Left: Input, Center: Label HDR, Right: Reconstruction
HDR.

V. DISCUSSION AND CONCLUSION

From Table II is possible to infer that using an MSE loss
the model was able to preserve and even increase the overall
contrast perception across predictions. In contrast the model
trained with a L1y loss was not capable of replicating the con-
trast distribution. A quick analysis of the predictions histogram
presented in Figures 4 showed how the L1y loss shifted the
distribution of pixel intensities. On the other hand Figure 5
shows MSE loss results where a better intensity distribution
is seen with a tonality similar to the reference label. So far
referenced approaches determine HDR reconstruction quality
base on qualitative methods, however objective approaches

have been presented [18] in recent years and are worth
considering for HDR quality measurement.

The proposed pipeline for an HDR US dataset demonstrated
to be effective in training a DL model. In addition, the creation
of an HDR-LDR data set from manually taken studies could
enable the benchmarking of new approaches and ideas for
HDR-US experimentation. Finally, the trained model results
suggested that further experimentation combined with better
training techniques can result in new implementations of HDR
imaging in the field of US imaging.
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