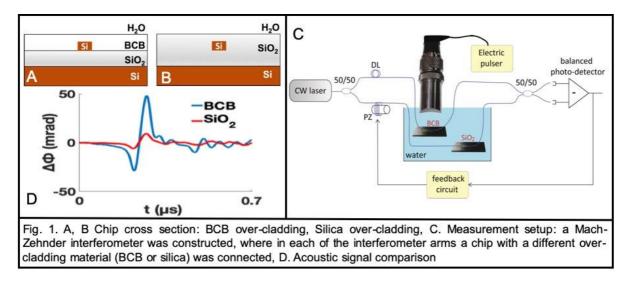
Enhanced sensitivity of silicon-photonics-based ultrasound detection via BCB coating

Resmi Ravi Kumar¹, Evgeny Hahamovich¹, Shai Tsesses¹, Yoav Hazan¹, Assaf Grinberg¹, Amir Rosenthal¹, ¹Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Background, Motivation and Objective


In biomedical applications, ultrasound detection is conventionally performed with piezoelectric transducers. Due to the opacity of piezoelectric transducers and their reduced sensitivity upon miniaturization, there is a need for the development of new detection methodology. Recently, ultrasound detection has been demonstrated with waveguides fabricated in silicon-on-insulator (SOI) substrates. Ultrasound detection via silicon (Si) waveguides relies on the ability of acoustic waves to modulate the effective refractive index of the guided modes. However, the low photo-elastic response of Si and SiO₂ has limited the sensitivity of conventional SOI sensors. In this study, we demonstrate that the sensitivity of Si waveguides to ultrasound may be significantly enhanced by replacing the SiO₂ over-cladding with bisbenzocyclobutene (BCB) – a transparent polymer with a high photo-elastic coefficient.

Methods

We experimentally characterized the response of the Si waveguides shown in Figs. 1a and 1b to ultrasound for longitudinal acoustic waves. The acoustic waves were ultrasound bursts generated by a cylindrically focused ultrasound transducer with a central frequency of 15 MHz. The resulting phase variations in the waveguide at $\lambda = 1540$ nm was monitored using interferometric setup described in Fig. 1c.

Results/Discussion

We have experimentally demonstrated that the BCB over-cladding enhanced the signal by a factor of 4.98 (Fig. 1d). Using our theoretical model and accounting for a 10 nm fabrication error in each of the dimensions of the waveguide, the enhancement in sensitivity were 3.9 ± 2.3 for the TM mode, in good agreement with the experimental value. The enhancement in sensitivity may be solely attributed to the high photo-elastic coefficients of BCB. The use of Si waveguide with a polymer over-cladding may be regarded as a hybrid approach that exploits the advantages of both materials, combining the miniaturization level offered by Si photonics with the high photo-elastic response of BCB, leading to the sensors with sensitivity values comparable to those achieved with polymer waveguides.

