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Abstract—Our previous work on estimating the local speed
of sound from average sound speed assumes a perfectly layered
medium where sound speed is only allowed to vary axially away
from the transducer surface. This layered-medium approach
relies on inverting the relationship between the local interval
sound speeds in each layer and the effective average sound speed
up to a particular imaging depth. The primary limitation of
this approach is that local sound speed estimation can become
inaccurate in the presence of lateral variations in sound speed
or a curved transducer surface. To better estimate sound speed
in the presence of these non-idealities, we propose a travel-time
tomographic approach that accounts for propagation paths from
the scattering volume to each transducer element.

Index Terms—Speed of Sound, Ray-Tracing, Tomographic
Reconstruction

I. INTRODUCTION

The sound speed in a medium fundamentally impacts how
the ultrasound imaging system physically interacts with the
medium being imaged. Both the travel times and signal
strength of the echoes back-scattered by the medium are
impacted by the speed of sound in the medium. The goal of
(B-mode) ultrasound imaging is to focus the back-scattered
ultrasound signal at each location in the ultrasound image by
dynamically delaying-and-summing channel data at each point
in the image. The delays used to focus sound at each location
in the ultrasound image depend on the assumed speed of sound
in the medium, If the assumed speed of sound matches the
effective average speed of sound in the medium, the back-
scattered signal should be coherently aligned after applying
delays. However, a mismatch in the speed of sound results in
a misalignment of signal after applying delays.

This signal misalignment, also known as phase aberration,
not only contributes to ultrasound image degradation but can
also be used to estimate speed of sound by considering the
variation in sound speed along various propagation paths [1].
Some recent works have also used knowledge of the speed of
sound in the medium to perform distributed phase aberration
correction in diffuse scattering media [2].

Sound speed has also been used as biomarker to characterize
the disease state in tissue. For example, cancer lesions can be
identified as globular regions with an abnormally high speed of
sound [3]. Several sound speed estimators have been proposed
for the detection of cancer lesions based on sound speed

contrast using both transmission-based [3] and reflection-based
[1] setups. Sound speed can also serve as a biomarker for non-
alcoholic fatty liver disease (NAFLD). High fat concentration
has been shown to decrease the speed of sound in the liver
[4]. Many recent works [1], [2] have considered sound speed
estimation in layered media in order to assess the efficacy
of sound speed measurement in liver through the superficial
abdominal layers. Similar models have been proposed for
sound speed estimation in the liver based on focusing quality
metrics and the measured thicknesses of abdominal layers [5].

Our prior work on sound speed estimation [2], [6] has been
focused on estimating the local speed of sound in layered
media. This work assumes infinitesimally thick layers so that
as long there is negligible lateral variation in the speed of
sound in the medium, the local sound speed may be estimated
accurately. This model relates the effective average speed of
sound up to particular depth to the local speed of sound
as a function of depth. The effective average sound speed
has been measured by cross-correlation [6] and coherence
maximization [2]. This work introduces a new tomography-
based method for sound speed estimation that directly accounts
for the propagation paths between the transducer array and the
scattering volume. The goal of this new tomographic approach
is to better tolerate and measure the lateral variation in the
speed of sound in the medium.

II. THEORY

A. Travel Times in a Spatially-Varying Sound Speed Medium

Assuming a two-dimensional medium with coordinates
(x, z) and sound speed c(x, z) where (x

i

, 0) is the location
of the ith element on the transducer array, the travel time ⌧

from the the ith element to an arbitrary point (x, z) in the
medium can be found using the eikonal equation

r⇣
@⌧

@x

⌘2
+
⇣
@⌧

@z

⌘2
=

1

c(x, z)
(1)

subject to the boundary condition ⌧(x
i

, 0) = 0. The eikonal
equation (12) accurately models refraction and can be solved
efficiently using the fast marching method [7].
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B. Model for Sound Speed in a Layered Medium

In an M -layered medium, the effective average sound speed
after M layers is
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where c

i

is the local sound speed in the ith layer. To estimate
the local sound speed in the M th layer from average sound
speed estimates after the (M � 1)th and M th layer, the
following inversion formula can be used.
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As shown in equation (3), local sound speed estimates
depends on accurate average sound speed estimates. The
concept of average sound speed assumes that applying the
following one-way geometric delays to focus channel data at
(x
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) will align wavefronts prior to coherent summation.
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C. Tomographic Reconstruction Model

Neglecting refraction and assuming that sound travels on a
straight ray path from the ith transducer element at (x

i

, 0) to
a focal point (x

f

, z

f

), the travel time ⌧
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can be calculated as
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is the path length.
By assuming that the variation in the sound speed is small
enough relative to the average sound speed over the path of
propagation, we can safely neglect the effects of refraction.
These line integrals, indexed over all transducer elements and
focal points, can be used to form a linear system of equations
that relates individual pixels in the sound speed distribution of
the medium to the travel time observed over each path:

~

t

obs

= H~s, (6)

where ~s is a vector of the pixels in 1
c(x,z) , H is a matrix that

encodes the line integrals between every pair of transducer
element and focal point, and ~

t

obs

is a vector of the travel
times observed over those propagation paths. The average
sound speed measurement at each focal point may be used
to construct ~t

obs

. This linear system defines an ill-conditioned
inverse problem whose goal is to recover the sound speed
distribution in the medium from the measured travel times.
Since phase aberration is the mechanism by which the travel
times are measured, we will refer to this tomographic frame-
work for sound speed reconstruction as inverse-modeled phase
aberration computed tomography (IMPACT).

TABLE I
K-WAVE SIMULATION SETTINGS

Parameter Value Units
Array Geometry Linear -

Number of Elements 128 elements
Element Pitch 0.15 mm

Center Frequency 8 MHz
Fractional Bandwidth 0.7 -
Sampling Frequency 85.56 MHz

Grid Spacing 0.03 mm

D. Bayesian Reformulation and Model Inversion

As part of IMPACT, we re-frame the solution of (6) as
a Bayesian maximum likelihood estimation problem. First,
the residuals ~

t

obs

� H~s are modeled as a normal random
variable with mean ~0 and covariance R, which is a diagonal
matrix whose entries are proportional to D

i

(x
f

, z

f

). The
purpose of scaling the variance of the observations with
propagation distance is to account for the decrease in SNR due
to attenuation and geometric spreading of the wave along the
path of propagation. Second, we model the prior distribution
over ~s as normal random variable with mean ~s

prior

= 1
1540m

s

and covariance Q. Rather than directly implement Q as a
full matrix, Q is implemented implicitly as a convolution
with a Gaussian blurring kernel. The Gaussian blurring kernel
encodes the covariance between neighboring pixels in the
slowness distribution and maintain the smoothness of the
reconstruction. Maximizing the posterior likelihood results in
the following least-squares reconstruction problem:
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The closed-form solution to this least-squares reconstruction
problem is

~s = ~s

prior
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), (8)

which can be broken into two parts

(HQHT +R)⇠ = ~
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Equation (9) can be solved for ⇠ using conjugate gradient
and the result is fed into (10) to update the prior slowness
distribution. Note that in this form, ~

t

obs

� H~s

prior

is the
observed phase aberration. Equations (9) and (10) summarize
the implementation of IMPACT.

III. METHODS

A. Simulation of the Full Synthetic Aperture Dataset

The complete full-synthetic aperture (FSA) dataset, con-
sisting of received channel data from individual firings from
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Fig. 1. Sound speed estimation and distributed aberration correction in a
diffusely-scattering two-layer medium simulated in k-Wave (settings described
in Table I). Resolution and lesion contrast are compared between the constant
sound speed and the eikonal-corrected image formation in Table II.

each transmit element, was simulated in k-Wave [8] for a
two-layer medium of random diffuse point scatterers, whose
reflectivities were modified to simulate a hypoechoic lesion
and surrounding point targets. The FSA dataset was also
simulated for diffuse scattering in multilayered and abdominal
media [9]. Each FSA dataset was then converted to I/Q channel
data using the Hilbert transform. Simulation parameters such
as the transducer configuration, transmit pulse, computational
grid, and sampling are described in Table I.

B. Sound Speed Estimation and Image Reconstruction

FSA data were focused at all points in the ultrasound
image at sound speeds ranging from 1400 to 1700 m/s.
The focused, or delayed, channel data were summed across
transmit channels, leaving behind receive channel data for each
imaging point. Coherence factor (CF) [10], given as

CF =
|
P

N

k=1 s[k]|2

N

P
N

k=1 |s[k]|2
, (11)

where s[k] are complex samples from each of N receive chan-
nels, was measured for each imaging point and sound speed.
The coherence factor images at each sound speed are spatially
smoothed in order to obtain a speckle-averaged coherence

Fig. 2. Sound speed estimation in a four-layer medium

Fig. 3. Sound speed estimation in an abdominal medium

factor for each sound speed and focal point. The sound speed
that maximizes CF at each focal point is determined to be the
effective average speed of sound (c

avg

). We recover estimates
for the local speed of sound either by applying the layered
model (equations (2) and (3)) to each vertical line down the
image or the tomographic model (equations (5)-(10)) which
handles all imaging points at once.

C. Travel Times in a Spatially-Varying Sound Speed Medium

Assuming a two-dimensional medium with coordinates
(x, z) and sound speed c(x, z) where (x

i

, 0) is the location
of the ith element on the transducer array, the travel time ⌧

from the the ith element to an arbitrary point (x, z) in the
medium can be found using the eikonal equation
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(12)

subject to the boundary condition ⌧(x
i

, 0) = 0. The eikonal
equation (12) accurately models refraction and can be solved
efficiently using the fast marching method [7].

IV. RESULTS

A. Sound Speed Estimation and Aberration Correction

Figure 1 shows the diagram of the medium simulated in k-
Wave (simulation settings shown in Table I), the tomographic

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

WeI8.3



TABLE II
COMPARISON OF IMAGING QUALITY METRICS BETWEEN CONSTANT

SOUND SPEED AND EIKONAL-BASED BEAMFORMING.

Lesion Top Row Bottom Row
Contrast Point Targets Point Targets

(dB) -6 dB Width (mm) -6 dB Width (mm)
1480 m/s 3.2012 0.21 0.99
Beamforming
1540 m/s 2.8817 0.61 0.36
Beamforming
Eikonal 2.8247 0.18 0.35

reconstruction of sound speed in the medium, and B-mode
images based on fixed beamforming sound speeds and the
aberration correction methodology based on the eikonal equa-
tion in [2]. The aberration corrected B-mode image shows
that the tomographic estimate of local sound speed is accurate
enough so that the resulting local sound speed distribution
results in optimal focusing at all imaging points. Table II
shows that aberration correction using the eikonal-based travel
times leads to point target resolution that is better than the
resolution achievable by constant sound speed beamforming
at all depths. These results imply a strong duality between
sound speed reconstruction and the focusing quality achievable
by phase aberration correction: sound speed reconstruction is
as accurate as the ability of phase aberration correction to
improve focusing quality in the image. If small sound speed
changes lead to large changes in focusing quality, sound speed
should be easy to estimate accurately; conversely, if sound
speed changes have a negligible effect on focusing quality,
sound speed becomes difficult to estimate accurately. When
applying this sensitivity analysis to the tomographic estimate,
it becomes clear that focusing quality in the image is largely
insensitive to sound speed variations at the deepest depths in
the medium; as a result, the tomographic reconstruction has
large fluctuation at the deepest imaging depths.

B. Comparing Tomographic and Layered Medium Models

In the simulated four-layer medium (Figure 2), the RMS
error in local sound speed estimation improves from 47.1
m/s to 6.3 m/s when moving from the layered model to the
tomographic approach. Similarly, in the simulated abdominal
medium (Figure 3), the RMS error in local sound speed
estimation improves from 65.4 m/s to 17.9 m/s. These im-
provements are due to the fact that the tomographic inversion
considers all the paths leading to the focal point whereas the
layered model treats each vertical line through the medium
separately. However, despite these improvements, the lateral
inhomogeneities in the medium are not accurately captured
by the reconstruction process. Initially, in the top-most layers,
tomography reasonably recovers the local sound speed dis-
tribution in the medium. However, deeper into the medium,
higher order phase aberrations and errors in the assumed
location of the focal points causes the local sound speed
estimate to drift away from its true value. One solution to this

problem would be to focus the channel data using this estimate
of the local sound speed, re-estimate phase aberration, and
iterate through IMPACT until convergence is reached. Future
work should investigate the convergence of this procedure and
any subsequent improvements on sound speed estimation.

V. CONCLUSIONS

Previous work shows that sound speed can be measured
accurately in a layered medium by relating the effective
average sound speed up to a particular depth to the local
sound as a function of depth. The goal of this work was to
relax the requirement that medium is strictly layered by using
a tomographic approach that we call IMPACT. IMPACT per-
forms well in perfectly layered media as well as in media with
moderate lateral variations in sound speed. However, IMPACT
is ultimately limited by certain modeling assumptions such as
perfect knowledge of the focal point. Sound speed variations
can change the location of the focal point. Furthermore,
our coherence-based approach does not model higher-order
phase aberration. Future work should incorporate the quan-
tification of higher-order phase aberration and investigate the
convergence of an iterative IMPACT procedure that alternates
between a sound speed model and the quantification of phase-
aberration after focusing using the sound speed model.
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