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Abstract— The backscatter coefficient (BSC) describes the
scattering properties of a medium and can be used to character-
ize tissue, such as fatty liver. To calculate the BSC, a calibration
spectrum is needed, which can be acquired using a reference
phantom method before or after the clinical scanning procedure
is complete. This requires yet another scanning procedure that
can disrupt the busy clinical flow. Therefore, we have explored
the use of a convolutional neural network (CNN) as a means
of eliminating an external reference step while still capable of
classifying liver disease in a rabbit model of fatty liver. Sixty
New Zealand white rabbits were separated into five cohorts
with each cohort maintained on a special high fat diet to induce
different degrees of fatty liver. One week before scanning, rabbits
were placed on normal chow. Rabbit livers were scanned in
vivo using an L9-4/38 linear array connected to a SonixOne
scanner. Raw RF data were collected from the scans and used
for quantitative ultrasound (QUS) analysis. Immediately after
scanning, the rabbit liver was extracted and the percent lipids in
the liver were estimated using the Folch assay. The rabbit livers
were classified into two classes: high fat (lipid percentage >=
5%) and low fat (lipid percentage <5%). The 5% threshold was
equal to the median of lipid percentages of all the rabbits. Livers
were classified using traditional QUS approaches and compared
with a CNN approach where no reference was utilized, and
the raw RF signals were used as the inputs. The attenuation
and the BSC were estimated from the RF using a reference
phantom technique. The attenuation slope, attenuation midband-
fit, the effective scatterer diameter, and the effective acoustic
concentration were extracted from the attenuation and the BSC
and used as features to train a kernel support vector machine
(SVM) for the task of liver lipid classification. A CNN was
designed to simultaneously extract the features from the raw RF
and perform liver lipid classification without using a reference
phantom. Six-fold cross validation was performed to quantify
the accuracy of the SVM classifier using the QUS parameters
and the CNN classifier using the RF. The average training and
testing accuracies across six folds using the QUS approach was
68.94% and 59.12%, respectively. The average training and test
accuracy using the CNN approach were 81.03% and 73.81% for
training and testing, respectively. The results demonstrate that
the CNN can be used to classify fatty liver without the need for
an external reference scan, i.e., reference-free QUS.

Index Terms— Machine learning, quantitative ultrasound,
steatosis

I. INTRODUCTION

Management of liver disease, including fatty and fibrotic
liver, is an important clinical problem. Nonalcoholic fatty
liver disease (NAFLD) is the most common chronic liver
disease in the United States [1]. With up to a third of the
United States population affected by NALFD (70-90% of
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obese or Type 2 diabetic patients have NAFLD), NAFLD
represents a significant medical concern. There remains an
unmet clinical need to develop imaging techniques for the
non-invasive evaluation of liver steatosis.

Different methods using ultrasound have been explored to
detect steatosis. Based on histological grading, Lin et al. [2]
observed an increase of attenuation coefficient for increased
fat infiltration in vitro in humans and a less pronounced in-
crease of attenuation for higher grades of fibrosis (0.63±0.16,
0.83±0.26 and 0.87±0.12 for grade 1, 2 and 3, respectively).
In our previous study of 15 rabbits on high fat diets, QUS
classified liver with accuracies up to 84% [3].

The first goal of the current study is to evaluate QUS as
a noninvasive method to quantitatively assess liver steatosis
in an in vivo rabbit model. The second goal of the study is
to evaluate using the raw ultrasound backscattered signals to
classify liver state without taking a reference spectrum. Inde-
pendent correlations between QUS parameters and lipid per-
centages were computed. Because the system settings when
acquiring rabbits liver scans were kept unchanged, we hypoth-
esized that a 1D convolutional neural network (CNN) could
compensate for the system-dependent and tissue-dependent
effects, and perform classification in a reference-free manner.
In the case of ultrasonic tissue characterization, the problem
can be formulated as a supervised learning strategy using a
CNN where the input is the backscattered RF data and the
output is the pathological indicator (e.g. fatty/non-fatty) when
the task is classification or the degree of fatty liver (in lipid
percentage).

The traditional spectral-based QUS approach does not
utilize the phase information in the RF signal, because only
the magnitudes of the power spectra from RF data were
computed. We hypothesized that a CNN could extract classi-
fication power from the lost phase information from the time-
domain RF and perform feature extraction and classification
simultaneously. In this work we compare the reference-free
CNN approach with more traditional QUS approaches that
requires a reference scan to classifying liver state. This could
eliminate a time consuming task of a busy clinical work flow.

II. METHODS

A. Animal Procedures

The protocol was approved by the Institutional Animal Care
and Use Committee (IACUC) at the University of Illinois at
Urbana-Champaign. Sixty male New Zealand White rabbits
were used in the study. The study was a 3 x 5 factorial design
with rabbits on a fatty diet for 0, 1, 2, 3 or 6 weeks The
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rabbits were returned to normal diet for about a week before
ultrasonic scanning.

B. Ultrasonic Scanning Procedures

Before scanning with ultrasound, rabbits were anesthetized
using isoflurane gas. The skin area above the liver was shaved
and depilated prior to scanning to improve coupling of the
ultrasound. Warm ultrasound gel was also placed on the skin
surface to improve coupling. The liver was scanned in vivo
with an L9-4/38 transducer using the SonixOne system (Ana-
logic Corporation, Boston, MA, USA) providing an analysis
bandwidth of 3 to 6 MHz. Fifty frames of post-beamformed
RF data sampled at 40 MHz were acquired for each rabbit and
saved for offline processing. A well-characterized reference
phantom was scanned using the same system and system
settings for calibration of the BSC and attenuation estimation
[4]. Following scanning, the rabbits were euthanized via CO2

while still under anesthesia.

C. Chemical Assay Procedures

Immediately following euthanasia, the liver was removed
en mass. A portion was fixed in neutral buffered formalin,
embedded in paraffin, sectioned, and stained with hematoxylin
and eosin for histopathological analysis by a board-certified
pathologist. Another portion was flash frozen in liquid ni-
trogen and stored at 80◦ C for use in the Folch assay [5].
The Folch was used to quantify the lipid levels in the liver,
respectively.

D. Quantitative Ultrasound Procedures

The attenuation and BSC curves were extracted from raw
RF data by segmenting the liver regions from the B-mode
images of the livers, i.e., regions of interest were chosen
for each frame. Care was taken to omit regions in the
liver that were shadowed by the ribs or other structures or
that contained large blood vessels. This region of interest
was divided into various data blocks of size of 15 by 15
wavelengths (5.1 mm by 5.1 mm) of the center frequency of
the array probe, i.e., 4.5 MHz. Each data block had a 75%
overlap with other data blocks. The BSC was calculated for
each data block using the reference phantom method [4]. The
reference phantom composition and properties are described
in detail in [6]. The attenuation curve in each data block
was estimated using the spectral log difference method and
averaged over all blocks in an image frame and over all
image frames for a rabbit to get a mean attenuation curve
for each rabbit liver [4], [7]. A slope and a mid-band fit at
4.5 MHz were estimated from the fitted line to the average
attenuation curve. ESDs and EACs were derived from the
BSC curves using a spherical Gaussian scattering form factor
[8]. Correlations between each QUS parameter and the lipid
percentages were calculated.

A linear regression of the four QUS parameters (ESD,
EAC, attenuation slope, attenuation midband fit) was per-
formed individually versus lipid. Specifically, linear regres-
sion of lipid percentage y1i y2i to QUS parameters vector
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where i is the index of the rabbits’ ID.

E. Convolutional Neural Network Architecture

The model-based QUS approach requires the use of the
reference phantom to derive the BSCs and the attenuation
from the power spectrum of the RF data. On the other hand,
the CNN approach did not require the use of a reference
phantom or a model. However, in this study the ultrasonic
scanner settings used in all of the rabbit scans were the same,
the differences manifested in the RF data were hypothesized
to come from the fatty diet. Using a CNN, the feature extrac-
tion and classification can be accomplished simultaneously
through the concatenation of the convolutional layers and the
fully connected layers. To prevent overfitting of the CNN
classifier, only the problem of classification was considered:
e.g., classification of high lipid vs. low lipid. The CNN was
used to classify from the liver images only, without the help
of reference signals to remove system effects.

The gated RF lines inside the same liver segmentation when
extracting the QUS parameters were used as inputs to the 1D
CNN. The length of each RF signal data segment was 5.1 mm,
corresponding to 15 wavelengths axially. Only the RF data of
the liver images were used, the RF data from the reference
phantom were not utilized. The RF data and the corresponding
labels from the Folch assay were collected to form a data set
to train and test the CNN. Six-fold cross validation was used
to prevent overfitting. In each fold, 52 rabbits were randomly
divided into 44 rabbits for training and 8 rabbits for testing,
and the process repeated five additional times. To keep the
number of rabbits in each class balanced, four rabbits were
of class 1 and four rabbits were of class 0 in the test set. Out
of 57 rabbits, five rabbits had very low SNR images where
we could not segment an ROI of 15 by 15 wavelengths, so
they were not included in the classification. The accuracy was
evaluated on a frame by frame basis.

The first layer of the network is the RF input from a
data block selected from the image of the sample. The filter
coefficients, hn

i [k], which are learned during the training
phase via backpropagation, extract different features from the
RF signal. We utilized the Adam optimizer [9], which is a
gradient descent method, due to its ability to escape local
minima of the cost function. The cost function used for multi-
class classification was the cross-entropy between the true
class vector p and the predicted class vector q defined as
follows:

H(p, q) = −
∑
i

p log(q). (3)

The output vectors p and q were normalized via a softmax
function so that each vector summed to unity and could be
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interpreted as the probability vector of different class outputs.
The output ground truth vector p was constructed using one-
hot encoding.

In practice, instead of using all the training examples to
calculate the gradients for updating the weights, a small
batch size of 16 or 32 examples was used to update the
network weights. This approach was empirically determined
to accelerate training and did not affect the accuracy. During
testing, the unseen RF input was passed through the network
to get an output prediction and accuracy was calculated based
on the predicted output and the true output.

The network architecture used in this study resembles the
VGG (named after Visual Geometry Group, University of
Oxford) network architecture in [10], where downsampling
at each layer was employed to reduce the dimensions of the
feature space. Downsampling or max-pooling was applied by
keeping the maximum values inside a sliding window across
the hidden layer output map. The idea of concatenation of
convolution, nonlinearity and max pooling was to select only
the features in the input that strongly contributed to the output
prediction. The initial weights of the convolutional filters
were randomized before training. To prevent feature weights
drifting and exploding, batch normalization [11] was also used
to ensure the weights at each layer had zero mean and unit
variance.

There were four hidden convolutional layers, four pooling
layers, two fully connected layers and a four softmax output
layer. After the fourth layer, all the output features were
concatenated to get a feature vector of 54 features. Then,
two fully connected layers were applied to those features
to transform the features into a two-class classification. The
two fully connected layers reorder the extracted features and
thresholding is applied (via the RELU function) to arrive
at the final prediction. To prevent overfitting, dropout was
used at the fully connected layers, which randomly sets the
node output to zero with a defined probability (0.5 was
used in this study). Dropout helps redistribute the weights
(importances) to other parts of the networks, since only 50%
of the weights are nonzero during training. Because node
outputs are randomly dropped-out, only a few of them are
important to classification, effectively reducing the dimension
of the final classifier (or reducing overfitting).

The loss function was constructed for classifying into two
groups. The loss function used for the binary classification
was the cross-entropy between the ground truth and the
predicted output:

L = −
N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (4)

where yi is the true output which takes the values of 1 for
high lipid or 0 for low lipid, ŷi is the current output of the
forward pass. The summation is over all training examples.
The final output node used a sigmoid function to suppress the
output into a scalar between 0 and 1. When the output of the
sigmoid function is greater than 0.5, the input is classified as
high lipid, otherwise low lipid.

TABLE I: QUS parameters for differentiating two classes with
threshold of 5% lipid liver levels.

ESD EAC Attenuation slope
(dB/cm.MHz)

Attenuation midband-fit
(dB/cm)

Low fat 127.16± 42.78 33.85± 16.14 0.69± 0.36 3.50± 0.88
High fat 117.16± 43.89 35.5± 16.75 0.97± 0.27 4.37± 1.44
p-value 0.38 0.71 0.03 0.003

To compare the performance of the CNN with traditional
QUS parameters, a support vector machine (SVM) was used
with BSC- and attenuation-derived parameters. Specifically,
the ESD, EAC, attenuation mid-band fit and attenuation slope
were combined in the SVM. Like the CNN, testing and
training accuracies were reported using six fold validation.

III. RESULTS

A. QUS Parameters

We sought to classify the rabbits into two groups of
steatosis using the four QUS parameters. There were 26
rabbits in the low lipid group and 30 rabbits in the high lipid
group. We had to remove an additional rabbit from the study,
which had a liver too small to segment.

Table I lists the averaged ESD, EAC, attenuation slope,
attenuation midband-fit and their p-values for differentiating
between the two lipid level classes. The attenuation curves had
more differentiating power than the BSC curves. Statistically
significant differences (p-value < 0.05) were observed for the
attenuation slope and attenuation midband-fit values between
the high and low lipid livers. Using the BSCs, or its derived
features ESD and EAC, did not result in the ability to
differentiate between the low and high lipid level groups.

Figure 1 plots the linear regression of the combined four
QUS parameters fit to the lipid percentages. The estimated
lipid percentage levels were typically higher than the actual
lipid levels for rabbits with low lipid level percentage and
lower for rabbits with a high lipid level percentage. The
coefficient of determination r2 was 0.69, suggesting the QUS
parameters can linearly track the lipid changes. On average,
the predicted lipid percentage and the ground truth lipid
percentage differed by 2%.

B. CNN for lipid classification

The QUS parameters correlated well with the lipid changes.
Table II shows the classification results of 1D CNN for
classifying two classes: low and high lipid with a threshold
of 5%. Table III lists the accuracies when using the QUS ap-
proaches with four parameters: ESD, EAC, attenuation slope,
attenuation midband fit. To classify the lipid classes using
QUS approaches, a kernel SVM was used. The results show
that the CNN outperforms the QUS approach for classification
of lipid changes.

IV. DISCUSSION

The objective of the study was to investigate the relation-
ship between QUS parameters and liver steatosis through non-
invasive ultrasonic interrogation and the application of a CNN
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Fig. 1: Linear regression of att slope, att intercept, ESD, EAC
to lipid percentages. Blue bars are the ground truth, orange
bars are the regressed values.

TABLE II: Training and testing accuracy of the 1D convolu-
tion neural network.

Training accuracy Test accuracy
Fold 1 82.16 % 78.56 %
Fold 2 80.18 % 77.47 %
Fold 3 81.62 % 68.46 %
Fold 4 81.24 % 65.39 %
Fold 5 80.5% 76.29 %
Fold 6 80.49 % 76.69 %

Average accuracy
across folds 81.03 % 73.81%

to the problem of liver classification allowing both a model-
free analysis and reference-free scanning configuration. The
rabbits were divided into five groups maintained on a fatty diet
over different durations. According to histological analysis,
rabbits had lipidosis and some with mild fibrosis, none of the
rabbits developed cirrhosis or heavy fibrosis.

A median of the lipid percentages of 5% was chosen as a
threshold for classification between low and high liver lipid.
This threshold was chosen because the value placed an equal
number of rabbits in the high and low liver lipid classes.
Attenuation increased for increased steatosis. However, atten-
uation slope and midband fit were more sensitive to lipid liver
percentages. ESD and EAC were not sensitive to lipid.

We also employed a 1D CNN to characterize the liver
state using the raw RF signals acquired from the liver. It was
empirically shown that the CNN can classify steatosis without
using a model for scattering and without using the reference
phantom when the system settings of all the scans were the
same. To test the feasibility of CNN in classifying the lipid
without using the reference phantom, a general convolutional
architecture commonly used in computer vision tasks was
adapted to classifying the RF signal. More recent developed
architectures like ResNet [12] or DenseNet Spectrum [13]

TABLE III: Training and testing accuracies of a SVM classi-
fier with four QUS parameters. The same rabbits in each fold
were used to compare with the CNN approach.

Training accuracy Test accuracy
Fold 1 66.14 % 67.04 %
Fold 2 70.79 % 38.17 %
Fold 3 69.64 % 62.17 %
Fold 4 66.96 % 68.53 %
Fold 5 70.62 % 61.13 %
Fold 6 69.49 % 57.68 %

Average accuracy
across folds 68.94 % 59.12%

might be tested in future work; however, those newer methods
require more data. The CNN loses some of its interpretabil-
ity. The CNN approach outperformed the QUS approach
when classifying steatosis (74% versus 59%). Misclassifica-
tion might be caused by unaccounted-for transmission losses
caused by the layer between the transducer and the liver.
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