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Abstract— This work presents a classifier architecture for Non-

Destructive Evaluation (NDE) applications which can robustly 

detect the presence and location of flaws using an ensemble of 

deep learning networks. The ensemble draws upon the effective 

sequential time analysis of Long Short-Term Memory - Neural 

Networks (LSTM–NN), the function estimation and prediction 

properties of Wavelet Neural Networks (WNN), and the feature 

extraction capabilities of Convolution Neural Networks (CNN). 

Simulation results confirm that the proposed architecture offers 

highly reliable flaw detection and localization with significant 

Flaw to Clutter Ratio (FCR) enhancements.  
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I. INTRODUCTION 

Neural networks have been applied to NDE applications for 

flaw detection in the presence of noise [1]. This work looks to 

extend upon this previous work and explore the feasibility of 

an ensemble of neural networks as a flaw detector. The 

ensemble of neural networks consists of outputs from LSTM-

NN [2], WNN [3], and CNN [4] combined into a fully 

connected neural network.  

LSTM-NN introduce the ability to add memory to a neural 

network. Hence, LSTM-NN is a popular choice for language 

translation and modeling, speech recognition, image 

captioning, and financial analysis. CNN has excellent data 

feature extraction capabilities. This makes it a popular choice 

for image recognition, detection, and analysis, as in the case of 

medical imaging. WNN has detailed function estimation 

properties. This makes it suitable for classification, prediction 

analysis techniques, and noise reduction.    

Ultrasonic imaging of materials to detect flaws can be 

corrupted by the presence of random interference and 

attenuation. This is due to the properties of the material and 

size of the material grains [5]. Comparing the ultrasonic 

frequency wavelength to the size of the grains, this is generally 

considered Raleigh scattering. A flaw is usually larger than a 

grain, so the flaw acts as a reflector. In order to enhance the 

flaw signal from the noise, a generic technique without any 

scattering characteristics of the material known a priori would 

be beneficial. This paper investigates an Adaptive Noise 

Cancellation (ANC) technique based upon LSTM-NN which 

could be used without any prior knowledge of the medium. 

This LSTM-NN ANC would be the first stage input to the 

ensemble neural network to enhance the signal from the noise. 

II. ENSEMBLE BASED ULTRASONIC FLAW DETECTION  

The overall system architecture proposed in this work is 

depicted in Fig. 1. Ultrasonic A-scans are the input data to the 

system. The A-scans are scaled from 1 to -1 first, before the 

neural network evaluation for input data consistency.   

 
Fig 1. System Level Block Diagram 

A. LSTM-NN ANC Architecture 

ANC is a technique of estimating a signal corrupted by 

noise or interference. Its advantage lies in the fact that no prior 

knowledge of the signal or noise is needed [6]. In the classical 

sense, ANC has been implemented using adaptive filtering 

such as Least Mean Squares (LMS). ANC would nominally be 

implemented with an input signal, and a reference signal, as a 

two-input system. However, in the case when the signal is 

narrowband and the noise is broadband, or vice versa, a 
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delayed version of the input signal can be used as the reference 

signal. A diagram comparison of the adaptive filter ANC 

compared to a LSTM-NN ANC is show in Fig 2. For the 

LSTM-NN ANC, this would be for the learning phase (back 

propagation) of the algorithm. For the test implementation, a 

delay of 8 samples was used.  

 
Fig 2. ANC System Level Block Diagram Comparison 

The LSTM-NN ANC uses a prediction method to create the 

output. The LSTM-NN ANC architecture, as an example of 3 

predictions, is depicted in Fig 3. For the test implementation, 

the number of predictions was 4, the number of layer depths 

was 2, and there was 45 LSTM cells/block.  

 
Fig 3. LSTM-NN ANC Implementation 

B. LSTM-NN Many-To-One Architecture 

The LSTM-NN Many-To-One will take “n” number of 

sequential data points and is trained to output the desired 

average of these values. Due to this effect, the LSTM-NN will 

down sample the original A-scan data length. The LSTM-NN 

Many-To-One architecture is depicted in Fig 4. For the test 

implementation, the number of samples averaged was between 

4 and 8 depending upon the A-scan length, the number of layer 

depths was 2, and there were 50 LSTM cells/block. From the 

figure, the outputs Zt to Zt+n are inputs to WNN and CNN.  

 
Fig 4. LSTM-NN Many-To-One Implementation 

C. CNN Architecture 

The CNN is a one-dimensional convolution process. The 

input data to the CNN are the outputs Zt to Zt+n from the 

LSTM-NN Many-To-One. There can be any number of 

convolutions processes to extract features from the data. 

Pooling on the output of the convolution can be used to 

simplify the number of calculations. The CNN architecture, as 

an example for 3 features, is shown in Fig 5. For the test 

implementation, the number of convolution nodes was 100, the 

number of features was 3, and pooling was 1.  Just like in the 

case of the LSTM-NN Many-To-One, the CNN output data is 

down sampled from the original A-scan data length.  

 
Fig 5. CNN Implementation 

D. WNN Architecture 

The WNN uses wavelet functions as the node activation. 

The learned parameters in the wavelet functions are the 

translation and dilation wavelet parameters. The wavelet family 

could be, as examples, Morlet or Ricker. The input data to the 

WNN setup are the outputs Zt to Zt+n from the LSTM-NN 

Many-To-One. The WNN architecture is shown in Fig. 6. For 

the test implementation, the number of wavelet nodes was 

1024, and the Ricker wavelet was used. Just like in the case of 

the LSTM-NN Many-To-One, the WNN output data is down 

sampled from the original A-scan data length.   
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Fig 6. WNN Implementation 

E. Output/Level Detection Architecture 

The final network in the sequence combines the outputs 

from the LSTM-NN Many-To-One, WNN, and CNN. This is a 

fully connected multiple layer combinational neural network.  

The level detector can be set to an arbitrary level that would 

determine if a flaw exists or does not exist. The level detector 

is the last stage after the output network layer. For the test 

implementation, the level detector was set to 0.5. Above 0.5 

there was a flaw, and below 0.5 there was no flaw.  

III. DATA SETS 

Two types of A-Scan data sets were evaluated. There was 

simulated data and experimental real data sets.  

A. A-Scan Simulated Data Set 

The simulated A-scan input data was simulated using 

ultrasonic measurement system models [7]. Each data set 

length was 1024 samples. The A-scan data input to the system 

consisted of training data and evaluation data. There were 50 

A-scans of each type listed in Table I. 

 TABLE I. SIMULATED DATA SET SUMMARY 

 FLAT 

BOTTOM 

HOLE WITH 

SYSTEM 

NOISE 

SIDE 

DRILLED 

HOLE WITH 

SYSTEM 

NOISE 

CRACK 

WITH 

SYSTEM 

NOISE 

SYSTEM 

NOISE 

ONLY 

TRAINING X X X  

EVALUATION X X X X 

 

B. A-Scan Experimental Real Data Set 

Experimental ultrasonic data were acquired from Panametric 

A3062, which is a broadband ultrasonic transducer of 0.375 

diameter with 5 MHz central. A steel block of type 1018 and 

grain size 50µm was used. Each data set length was 2048 

samples. The A-scan data input to the system consisted of 

training data and evaluation data. There were 14 A-scans of 

each type listed in Table II. 

 

 TABLE II. EXPERIMENTAL REAL DATA SET SUMMARY 

 FLAW WITH SYSTEM NOISE  SYSTEM NOISE ONLY 

TRAINING X  

EVALUATION X X 

IV. TABLE III. EVALUATION DATA SUMMARY OF RESULTS 

FLAT 

BOTTOM 

HOLE 

SIDE 

DRILLED 

HOLE 

CRACK SYSTEM 

NOISE 

ONLY 

SIMULATED 

DATA 

FLAW 

REAL 

DATA 

SYSTEM 

NOISE 

ONLY 

REAL 

DATA 

(1) (1) (1) (2) (1) (2) 

NOTE (1): ALL FLAWS DETECTED. NO FALSE TARGETS. 

NOTE (2): NO FALSE TARGETS.  

V. RESULTS 

MATLAB was used to generate the results. Figures 7 – 8 

are LSTM-NN ANC sample outputs for simulated and 

experimental real data when a flaw is present. Figures 9 -12 are 

ensemble sample outputs for simulated and experimental real 

data, and when a flaw is present and is not present. Table III is 

a summary of results. 

A. LSTM-NN ANC Simulated and Experimental Real Outputs 

 
Fig 7. LSTM-NN ANC single flaw in A-Scan Simulated Data 

 

Fig 8. LSTM-NN ANC single flaw in A-Scan Experimental Real Data 

 

FLAW 

FLAW 

FLAW 

FLAW 
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B. Ensemble Simulated and Experimental Real Outputs 

 

Fig 9. Ensemble crack flaw in A-Scan Simulated Data 

 

Fig 10. Ensemble single flaw in A-Scan Experimental Real Data 

C. Ensemble “No Flaw” – Simulated/Experimental Outputs 

 

Fig 11. Ensemble – No flaws present A-Scan Simulated Data 

 

Fig 12. Ensemble – No flaws present A-Scan Experimental Real Data 

VI. CONCLUSION 

This work presented an ensemble of neural networks for 

NDE. With preliminary results using simulated and 

experimental data, 100% accuracy was shown to be able to 

identify when a flaw existed, or did not exist, and the location 

of the flaw in the sequence. The proposed system could 

enhance the FCR by up to 30db. 

Further work in this project would be to test this 

architecture in different NDE environments, and with different 

types of flaws/background noise and validate the accuracy 

performance. 
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