Quantification of reverberation and aberration using lag-one coherence

James Long, Will Long, Gregg Trahey, Duke University, Department of Biomedical Engineering

Background, Motivation and Objective

Abdominal ultrasound imaging is known to be plagued by the effects of acoustic clutter, a temporally stable haze that reduces target conspicuity by decreasing contrast and obscuring fine details. Clutter is generated by two major sources: near-field reverberation and phase aberration. While both sources have a frequency dependence, its effects on each have not been quantitatively compared in an abdominal model. The aims of this study are: (1) quantitatively separate the contributions of these sources of clutter using lag-one coherence (LOC), a direct estimate of clutter levels, and (2) characterize trends in these contributions with frequency.

Statement of Contribution/Methods

Channel data capturing signal + reverberation + aberration (S+R+A) were obtained from an *ex vivo* setup consisting of a porcine abdominal layer placed over a speckle generating target (n=8) and *in vivo* liver in healthy volunteers (n=3), over a range of transmit frequencies. To capture isolated measurements of reverberation, the speckle generating target and liver were replaced with anechoic rubber and bladder in *ex vivo* and *in vivo* setups, respectively. LOC_{S+R+A} was calculated from fundamental and harmonic channel data. Using measurements of reverberation and signal only, a channel signal-to-clutter ratio (SCR) was calculated by taking the ratio of signal power to reverberation power. This SCR was used to calculate a corrected LOC (LOC_{S+R}), i.e. a measurement of the decorrelation due to reverberation alone, using derivations from Long *et al*, 2018.

Results/Discussion

Initial results show that LOC_{S+R} was appreciably higher than LOC_{S+R+A} , suggesting that at depth, reverberation contributes less to clutter relative to aberration. *In vivo* harmonic imaging yielded higher LOC_{S+R} values than those of fundamental imaging, agreeing with the 10 dB improvement in measured SCR. These findings match the clinical experience: because the harmonic signal is generated at depth, it may be less prone to near-field reverberation. However, the harmonic signal remains susceptible to aberration, which appears to be a larger source of decorrelation as frequency increases, shown by the increasing difference between LOC_{S+R+A} and LOC_{S+R} . The phase shifts caused by aberration become larger with increasing frequency, which may lead to higher-order effects such broadening of the transmit beam.

