Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)

Glasgow, Scotland, October 6-9, 2019

An Open Source GPU-Based Beamformer for
Real-Time Ultrasound Imaging and Applications

Dongwoon Hyun*, You Leo Li*, Idan Steinberg*, Marko Jakovljevic*, Tal Klap', and Jeremy J. Dahl*
*Department of Radiology, Stanford University, Stanford, CA 94305, TIndependent
Email: dongwoon.hyun@stanford.edu

Abstract—Recent technological advances in graphics process-
ing unit (GPU)-based computing have made it possible to
visualize customized beamforming pipelines and algorithms in
real-time. However, GPU programming is challenging and poses
a significant barrier to its widespread adoption in the ultrasound
research community. Here, we present an open source GPU
beamformer with the intent of making GPU beamforming more
accessible to a wider audience. The beamformer was written
in C++/CUDA and is comprised of a library of core classes
to perform typical ultrasound-related tasks, such as applying
focusing delays. Classes are arranged into a computational
graph that is fixed at compile-time, enabling high throughput at
runtime. Concrete examples are provided to demonstrate how to
interface the beamforming library with the MATLAB-based Ve-
rasonics platform to perform live B-mode and Doppler imaging.
Also provided is an example of deploying a TensorFlow neural
network in real-time via TensorRT. Compilation was performed
using CMake to allow for cross-platform compatibility. Including
overhead for data acquisition, the beamformer achieved live B-
mode imaging with a Verasonics Vantage 256 system at 55 frames
per second using a single NVIDIA Titan V GPU. The open source
GPU beamformer can be used as a starting point for real-time
algorithm deployment.

I. INTRODUCTION

Recently, open platform ultrasound systems have signifi-
cantly expanded the capabilities of academic ultrasound re-
searchers to prototype and test new image reconstruction
techniques. These systems allow customization of the transmit
waveform, provide access to the pre-beamformed data, and
can be used for real-time imaging [1]. In medical ultrasound
imaging, these systems have drastically reduced the time
from conception of an idea to its real-time manifestation for
presentation to clinicians [2], accelerating the rate of research.
Although technological advances have made real-time custom
imaging feasible, implementation is still challenging.

Pulse-echo ultrasound image reconstruction is inherently
a parallel computing task. The backscatter from a point in
the field is often considered to depend only on a small
neighborhood around the field point (e.g., the point spread
function), and thus backscatter properties such as magnitude
and frequency shift are considered to be local to the field
point. Consequently, many pulse-echo image reconstruction
algorithms (e.g., B-mode, displacement estimation) are for-
mulated to be independent of the field point position, i.e., the
same algorithm is applied to multiple field points. This type
of parallel computation is classified in computer science as
single instruction, multiple data (SIMD).

978-1-7281-4595-2/19/$31.00 ©2019 IEEE

Graphics processing units (GPUs) are designed for parallel
computing tasks and thus are well-suited for ultrasound image
reconstruction. GPUs are specialized processors consisting of
many cores. Although GPU cores are individually weaker
than general-purpose central processing units (CPUs), their
SIMD architecture makes them significantly more efficient and
powerful for parallelizable tasks. GPUs have been used exten-
sively to accelerate ultrasound computations, both in offline
applications and real-time deployment [2]-[8], including an
open source implementation called SUPRA [9].

Academic research laboratories in ultrasound imaging do
not commonly employ software engineers, and thus GPU com-
puting requires a significant investment of time and effort. The
SIMD nature of GPU programming is fundamentally different
from traditional programming, and can require some time to
become acclimated. Even after an algorithm has been opti-
mized in a testbed, the minutiae of compiling and executing
an algorithm on the target system (e.g., debugging compiler
and linker errors) can be surprisingly time-consuming.

The intent of this work is to alleviate this burden and make
GPU beamforming accessible to a wider audience by sharing
the framework used in our previous work [2]. Emphasis is
placed on readability, usability, and code structure rather than
on computational and/or memory efficiency. Even so, we show
that the code easily exceeds 50 frames per second for live B-
mode imaging. Below, we describe the code architecture and
provide simple examples to show how the code can be utilized
for real-time imaging on a Verasonics imaging system.

II. SOFTWARE BEAMFORMER ARCHITECTURE

The GPU beamformer, referred to as rtbf (real-time beam-
forming), is open source and is available as a git repository
at https://gitlab.com/dongwoon.hyun/rtbf. The rtbf repository
consists of a central library called gpuBF, as well as auxiliary
libraries annBF and vsxBF to demonstrate the interface with
deep learning libraries and a Verasonics research scanner. The
core gpuBF library is written in C++ using the NVIDIA CUDA
application programming interface (API). Installation instruc-
tions are provided at the repository webpage. CMake was
used as a cross-platform compiler to simplify the compilation
and setup. CMake generates and issues the actual compilation
commands on the user’s respective platform (e.g., Windows,
Mac, Linux), requiring the user only to specify the installation
locations of the prerequisite software (e.g., CUDA, MATLAB).

MoA4.2

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

A. Data Management

Data management is essential in GPU computing. Currently,
a major bottleneck in GPU computing is the transfer of data
between CPU memory and GPU memory. Hence, the ideal
workflow consists of a single CPU to GPU data transfer at
the beginning, followed by computations on the GPU using
GPU memory, followed by a final transfer of the processed
result from GPU to CPU memory (if not displayed directly
from the GPU).

A data management class called DataArray is included in
gpuBF. Upon initialization, a DataArray allocates GPU mem-
ory of the requested size and keeps track of a pointer to the
memory. DataArrays maintain an internal representation of
the data dimensions, which are stored as (from fastest changing
to slowest changing): rows, columns, channels, frames. Point-
ers to DataArrays can be passed between DataProcessors
(described below) without the need to actually move data
around, increasing throughput. The DataArray class also
provides functions for synchronous and asynchronous memory
transfer to and from the GPU. DataArray is a class template
and thus can be used to store various datatypes such as short
and float2. Upon cleanup, each DataArray is responsible
for freeing the memory it has allocated.

B. Data Processing

DataArrays are processed by classes derived from an ab-
stract base class called DataProcessor that enforces the over-
all structure of a computational graph. Each DataProcessor
accepts a pointer to a DataArray, processes the input data,
and produces a pointer to an output DataArray. Although a
new DataArray is generated by default, the class can also be
modified to operate in place as well. The actual processing
classes specify their own internal processing functions in the
form of CUDA kernels. Examples classes include:

e HilbertTransform Converts a real signal into its ana-

lytic signal via the Hilbert transform.

e Focus Applies focusing time delays as specified by user,
utilizing texture hardware to perform linear interpolation.

e FocusSynAp Applies synthetic aperture focusing using
coherent summation of either the transmit (default) or
receive aperture.

e ChannelSum Decimates the channels into a specified
number of channels (1 output channel by default).

o Bmode Detects envelope and optionally applies logarith-
mic compression. Performs incoherent compounding if
more than one input channel is provided.

e EnsembleFilter Applies a “slow-time” user-specified
FIR filter across the ensemble dimension.

o PowerEstimator Accumulates the measured power over
the ensemble dimension.

C. Computational Graph

DataProcessors are arranged into a computational graph
by passing DataArrays from one to the next. Utilizing a
computational graph is a two-step process: initialization and
real-time execution. All time-consuming memory allocations

Listing 1. Initialization of Computational Graph
// Declare DataProcessor objects

> DataArray<float2> DA; // datatype float2
5 HilbertTransform<float2> HT; // in-place
i ChannelSum<float2, float2> CS; // outputs float2

Bmode<float2, float> B; //
6 // Initialize computational graph
) DA.initialize (nrows, ncols, nchans,
8 HT.initialize (&DA); // DA —--> HT
9 CS.initialize (&HT); // HT ——> CS
B.initialize(&CS); // CS --> B

outputs float

nframes) ;

1(

Listing 2. Real-Time Execution
1 // Copy data from float2 xh_input in CPU memory
> DA.copyToGPU (h_input) ;
3 HT.applyHilbertTransform() ;
: CS.sumChannels () ;
5 B.detectEnvelopeLogCompress () ;
6 // Copy data into float xh_output in CPU memory
’ B.getOutputDataArray () —>copyFromGPU (h_output) ;

are performed and pre-computable values obtained during the
initialization step. Once initialized, the graph can be executed
repeatedly in real-time by streaming in new data.

For example, Listings 1 and 2 provide example code snip-
pets for a graph that takes an input DataArray of float2
datatype, applies a Hilbert transformation, sums the channels,
and then detects the envelope and applies logarithmic compres-
sion. Lines 2-5 declare the objects and their input and output
datatypes. Line 7 shows the initialization of a DataArray.
Lines 8-10 in Listing 1 show how the computational graph is
linked together using the various DataProcessors. By passing
the pointer to the previous DataProcessor as input, its output
DataArray is automatically linked as the input to the next
DataProcessor. In this example, no extra parameters were
needed to initialize the objects. More sophisticated classes
such as Focus require additional information (e.g., delay and
apodization tables) for initialization.

Lines 2-5 in Listing 2 show a typical real-time execution
function. First, the data is copied from CPU memory into the
DataArray’s GPU memory. One by one, the objects execute
their core functions, each of which calls one or more CUDA
kernels or CUDA libraries, such as cuFFT. Finally, the output
of the final class is copied back into CPU memory. In actual
real-time applications, the copyToGPU calls could be replaced
by copyToGPUAsync calls with an additional cudaStream_t
input to enable execution asynchronously from the host thread.

D. Neural Network Processing in Python

Due to the recent popularity of deep learning, major soft-
ware companies have devoted significant effort into developing
open source environments for quick and efficient tensor opera-
tions. The tensor operations used in deep learning can also be
used for ultrasound imaging. For instance, the task of channel
summation can be viewed as a “convolution” about the image
pixel dimensions using a 1x1 filter of ones in the channel
dimension, such that the output is simply the channel sum.

MoA4.2

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

One could conceivably construct an ultrasound beamformer
as a “neural network” composed of tensor computations using
deep learning frameworks such as TensorFlow or PyTorch.
Two such examples include [10]. This approach is advanta-
geous because the beamformers can be programmed in the
more user-friendly Python language, and can take advantage
of any built-in optimizations for GPU execution that are often
available. Moreover, hardware companies including NVIDIA
are actively developing APIs such as TensorRT to facilitate the
real-time deployment of neural networks implemented in these
frameworks on their GPU hardware. Although some of these
tools are still in their infancy, we foresee a future in which
researchers will implement their beamforming algorithms as
tensor operations in high-level Python and rapidly deploy them
in real-time using software that is already optimized for the
target hardware, with minimal need for manually writing and
tuning computation kernels.

As such, we include in annBF an example of channel sum
and envelope detection, written as an artificial neural network.
The neural network is written using TensorFlow Keras and
stored in a file format that can be interpreted by TensorRT.
A NeuralNetwork class (derived from DataProcessor) is
provided in annBF to construct the neural network on the
GPU and to stream data from the input DataArray into the
network in real-time. We additionally include the network used
to perform speckle-reduced B-mode imaging [11] available at
https://gitlab.com/dongwoon.hyun/nn_bmode/.

E. Unit Testing

To adhere to common software development best practices,
we also include unit testing for some of the classes within
gpuBF. Unit testing was performed using the googletest C++
testing framework. The framework is automatically down-
loaded and set up by CMake for use with rtbf. The unit
tests consist of simple examples that test the function of each
DataProcessor, covering edge cases when possible.

ITII. APPLICATION TO REAL-TIME IMAGING

We present several example imaging scripts from vsxBF for
live imaging on the Verasonics Vantage research platform.

A. Data Formatting

For convenience, a VSXDataFormatter class is provided in
vsxBF to convert the raw channel data buffer into the unfo-
cused analytic signal. On the Verasonics platform, sampling
can be performed either as baseband in-phase and quadrature
(IQ) data, or more redundantly, as modulated radiofrequency
(RF) data. For IQ data, VSXDataFormatter applies the neces-
sary interpolation to align the quadrature data, and for RF data,
VSXDataFormatter applies a HilbertTransform to obtain
the quadrature data. Additionally, VSXDataFormatter applies
the proper reshaping and dimensional transposition to ignore
the extra samples at the end of the raw buffer and to orient
the data for interfacing with gpuBF. Other utilities are also
included, such as copying data to and retrieving data from
MATLAB mxArrays.

-
N
1

"r 10.239
=107 56%
g 9r
8 8r
3
S 6.089
E st '

(0]
E 51
'_
c 4r
S
5 387
o
© 2 1575
wo
o 0.053 0229 0005 0.044
N\emcpﬁa\a\:ormaﬂggcuss\’“‘b&?hanﬂe‘sum Bmode \iemePy yerhead
Fig. 1. The execution time of the computational graph during the real-

time loop is shown, along with memory copies to and from the device and
the overhead time. Overhead constituted 56% of the total time, followed by
synthetic aperture focusing (33%) and copying raw data to the GPU (9%).

B. Example: B-mode Imaging

An example script of B-mode imaging with plane wave
compounding is included in vsxBF. Our setup consisted of a
Verasonics Vantage 256 system connected to a Linux worksta-
tion housing an NVIDIA Titan V GPU. An L12-3v transducer
with a center frequency of 8 MHz was used to transmit 25
plane waves at angles ranging from -5° to +5°. The output
image pixel grid was 30 mm in depth and 20 mm in azimuth
sampled at a spacing of 3 samples per wavelength (i.e., sound
speed divided by center frequency), corresponding to 456 x305
pixels. The computational graph consisted of the following
DataProcessors:

1) vSXDataFormatter<short, float2>
2) FocusSynAp<float2, float2>

3) ChannelSum<float2, £loat2>

4) Bmode<float2, float>

Real-time execution of the computational graph is profiled in
Fig. 1. The overhead (time from the end of computation of
one frame to the beginning of the next frame) dominated the
time, contributing to 56% of the total time. Note that overhead
includes the transfer of the raw buffer from the Verasonics
to the workstation and any CPU overhead in executing the
code. Synthetic aperture focusing of 25 plane waves took
approximately 33% of the total time. Transfer of the raw
unprocessed data from CPU to GPU memory accounted for
9% of the total time. Channel summation, data formatting,
envelope detection and logarithmic compression, and memory
copy of the processed B-mode image were negligible. Ex-
cluding the overhead, the theoretical maximum computational
throughput was 125 frames per second. Including overhead,
the actual frame rate was 55 frames per second.

A screenshot of the real-time display is shown in Fig. 2 for a
different B-mode acquisition (40 mm by 25 mm field of view).
Imaging was performed in a phantom containing cylindrical
anechoic lesions of various diameters. In this imaging case,
live imaging was performed at 47 frames per second.

MoA4.2

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

5 0 5 10 15
Azimuth (mm)
47
fps

Fig. 2. An example screenshot from the real-time B-mode imaging script is
displayed. Live imaging was performed at 47 frames per second for a region
of 40 mm by 25 mm with 3 pixels per wavelength.

C. Other Beamforming Examples

Other beamforming configurations can be achieved by plug-
ging in different DataProcessors. For instance, the same B-
mode image reconstruction can be instead performed using a
neural network by modifying the computational graph to use
the B-mode imaging network:

1) vSXDataFormatter<short, float2>

2) FocusSynAp<float2, float2>

3) NeuralNetwork<float2, float>
wherein the output of the NeuralNetwork is identical to the
output of Bmode.

Similarly, the computational graph for Power Doppler imag-
ing consists of the following DataProcessors:

1) vSXDataFormatter<short, float2>

2) EnsembleFilter<float2>

3) FocusSynAp<float2, float2>

4) ChannelSum<float2, float2>

5) PowerEstimator<float2, float>

In this imaging case, the plane wave acquisitions are repeated
multiple times to form a Doppler ensemble that is filtered
in place by EnsembleFilter, focused, and converted into a
Power Doppler image.

IV. CONCLUSION

We have presented an open source GPU-based software
beamformer implementation. This work is a pedagogical
demonstration of a framework that abstracts away many of
the tedious low-level details commonly encountered in GPU
programming, with the goal of providing a starting point for
real-time algorithm deployment with GPUs.

ACKNOWLEDGMENT

This work is supported by the National Institute of Biomedi-
cal Imaging and Bioengineering through grant RO1-EB013661.
The Titan V GPU used for this research was donated by the
NVIDIA Corporation.

REFERENCES

[1] E. Boni, A. C. H. Yu, S. Freear, J. A. Jensen, and P. Tortoli, “Ultrasound
open platforms for next-generation imaging technique development,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, vol. 65, no. 7, pp. 1078-1092, July 2018.

[2] D. Hyun, A. L. C. Crowley, M. LeFevre, J. Cleve, J. Rosenberg, and J. J.
Dahl, “Improved visualization in difficult-to-image stress echocardiogra-
phy patients using real-time harmonic spatial coherence imaging,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 66, no. 3, pp. 433441, March 2019.

[3] D. Liu and E. S. Ebbini, “Real-time 2-d temperature imaging using
ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 57,
no. 1, pp. 12-16, Jan 2010.

[4] B.Y.S. Yiu, I. K. H. Tsang, and A. C. H. Yu, “Gpu-based beamformer:
Fast realization of plane wave compounding and synthetic aperture imag-
ing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 58, no. 8, pp. 1698-1705, August 2011.

[5] D. Hyun, G. E. Trahey, and J. J. Dahl, “In vivo demonstration of a real-
time simultaneous b-mode/spatial coherence gpu-based beamformer,” in
2013 IEEE International Ultrasonics Symposium (IUS), July 2013, pp.
1280-1283.

[6] M. Walczak, M. Lewandowski, and N. Zolek, “Optimization of real-time
ultrasound pcie data streaming and opencl processing for saft imaging,”
in 2013 IEEE International Ultrasonics Symposium (IUS), July 2013,
pp. 2064-2067.

[7]1 E. Boni, L. Bassi, A. Dallai, V. Meacci, A. Ramalli, M. Scaringella,
F. Guidi, S. Ricci, and P. Tortoli, “Architecture of an ultrasound system
for continuous real-time high frame rate imaging,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 9,
pp. 1276-1284, Sep. 2017.

[8] A.J.Y. Chee, B. Y. S. Yiu, and A. C. H. Yu, “A gpu-parallelized eigen-
based clutter filter framework for ultrasound color flow imaging,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 64, no. 1, pp. 150-163, Jan 2017.

[9] R. Gobl, N. Navab, and C. Hennersperger, “Supra: open-source
software-defined ultrasound processing for real-time applications,”
International Journal of Computer Assisted Radiology and Surgery,
Mar 2018. [Online]. Available: https://doi.org/10.1007/s11548-018-
1750-6

[10] P. Jarosik, M. Byra, and M. Lewandowski, “Waveflow-towards inte-
gration of ultrasound processing with deep learning,” in 2018 IEEE
International Ultrasonics Symposium (IUS), Oct 2018, pp. 1-3.

[11] D. Hyun, L. L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming
and speckle reduction using neural networks,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 5, pp.
898-910, 2019.

MoA4.2

