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Abstract—High intensity focused ultrasound (HIFU) is a non-
invasive therapy used to induce thermal dose to target tissue
for desired medical outcomes. With this technique, malignant
tissues can be destroyed using high energy with minimal side
effects compared to surgery, that can induce more pain and
leave permanent scar to patients. Temperature monitoring is
crucial to preserve healthy tissues during thermal therapies.
Magnetic resonance (MR) thermometry is often used to monitor
the ablation process precisely. However, it is costly and some
patients have contraindications. Ultrasound is a cost-effective
medical imaging modality and suffers from less restrictions on
the operating environment and can be used safely with all
patients. In this paper, we propose a method to monitor the
temperature with ultrasound using a deep learning approach.
The system is designed to collect ultrasound channel data during
HIFU therapy and alternates ablation phases and monitoring
phases. In the monitoring phase, ultrasound elements in the
probe receive ultrasound pulses sent from the 256 HIFU elements
sequentially. We use convolutional long short term memory
(ConvLSTM) neural network to generate temperature images
from the ultrasound channel data. The temperature images are
compared with the ones collected from MR thermometry. Mean
and max difference of each image are calculated to evaluate the
performance of designed neural network. We achieve 0.57 ± 0.33
◦C of mean difference and 1.99 ± 1.07 ◦C of max difference in
axial plane. In coronal plane, we achieve 0.33 ± 0.19 ◦C of mean
difference and 1.54 ± 1.04 ◦C of max difference. The results show
the potential use of ultrasound and deep learning to reconstruct
temperature images.

Keywords—ultrasound, HIFU, temperature monitoring, ther-
mometry, deep learning

I. INTRODUCTION

To remove malignant tissues, surgical excision is often per-
formed but it may leave pain and permanent scar to patients.
Also, it generally takes a long time for patients to recover from
the surgery. In order to reduce the damage and recovery time
for patients after surgery, non-invasive ablation technologies
are developed. High intensity focused ultrasound (HIFU) is a
widely used one [1], especially for prostate [2] and uterine
fibroid treatments [3]. HIFU system focuses acoustic energy
to increase temperature at a small target region. Thus, tem-
perature monitoring is essential to guide the ablation process.
Magnetic resonance (MR) thermometry is developed based on
temperature sensitivity of proton resonance frequency [4]. This

provides real time imaging capability with high accuracy, but
its high cost and strict requirement of nonmetal environment
push for the development of monitoring methods using other
medical imaging modalities [5]. For example, R. Seip and
E.S. Ebbini developed a method to monitor temperature by
measuring acoustic information based on discrete scattering
model [6].

In previous works, we showed the feasibility of an ultra-
sound thermometry method using few ultrasound elements
for HIFU therapy monitoring [7] [8]. We collected time of
flight (TOF) information obtained from ultrasound elements
to reconstruct temperature images. Moreover, deep learning
approach was applied to reconstruct temperature images using
TOF information at different temperature [9]. However, these
methods make use of only one temperature dependent ultra-
sound property which is the ultrasound propagation velocity.
In fact, more properties can be used such as the attenuation
coefficient. In order to extract both spacial and temporal
features, we use a ConvLSTM network [10] to predict a
temperature image. More ultrasound properties may be learned
from ultrasound raw data, and this may improve ultrasound
thermometry.

II. METHOD AND EXPERIMENT
A. Data Collection

The experiment setup is illustrated in Fig. 1. It is composed
of an MR-compatible ultrasound probe with 128 elements, an
MR machine to collect temperature images, a HIFU system
with 256 elements and a phantom made of 2 % agarose and 2
% silicon-dioxide to mimic biological soft tissue. The HIFU
surface is covered by mineral oil and degassed water for
acoustic coupling. The ultrasound probe is fixed with a holder
on top of the phantom to collect ultrasound signals. This setup
is fixed in the MR gantry to obtain MR temperature images
and ultrasound channel data simultaneously.

In the experiment, the system alternates ablation phase and
monitoring phase for six cycles. In the ablation phase, the
HIFU elements transmit continuous waves at 78 Watts for 5
seconds. The acoustic wave focuses at the natural focal point
and the temperature increases. In the monitoring phase, ultra-
sound pulses are transmitted at 2 Watts by each HIFU element
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Fig. 1. HIFU experiment setup and timing diagram.

sequentially with a pinging interval of 3 ms. Ultrasound waves
propagate through the target region at different speeds due
to the temperature evolution. The pulses are captured by an
MR-compatible ultrasound probe. We collect 4096 samples
at a sampling rate of 62.5 Mhz after 131.072 ms delay. A
trigger is generated when the HIFU element transmits the
signal and the sampling is synchronized with it. Fig. 2 shows
the channel data received by one ultrasound element in the
probe at a monitoring phase. The x axis is each HIFU element
number transmuted with 3 ms interval, the total time of
monitoring phase is 768 ms using 256 HIFU elements. In the
monitoring phase, the ultrasound pulse power is low and they
are not focused. Therefore, the temperature change during the
monitoring phase can be negligible. Temperature images in
axial and coronal planes are generated by MR thermometry
every 1.5 seconds. We average two MR temperature images
which are acquired right before and after a monitoring phase.
Before experiment, the initial phantom is at room temperature
which is 20 ◦C. The temperature after the final ablation rise
up to 45 ◦C. We repeat the experiment three times.

Fig. 2. An example of a channel data in a monitoring phase collected from
an ultrasound element.

Since the pitch of ultrasound probe is 0.22 mm, the channel
data collected from adjacent elements may have correlation.
Therefore, we split training and test dataset by different
sampling combinations. For each receiving element, we pick
signals transmitted from 128 HIFU elements among 256 HIFU
elements randomly for 20 times for training. Since we conduct

3 experiments with 128 probe elements, the size of train set
is 128 × 3 × 20 which is equivalent to 7680. Similarly, we
generate validation set and test set by randomly picking 128
HIFU elements for three times. The number of validation and
test set is 128 × 3 × 3 which is equivalent to 1152.

B. Neural Network Design

The pulse arrives at first 2048 samples, thus we use first
2048 samples to reduce the input image size. The input is the
concatenation signal of initial monitoring phase and current
monitoring phase. Therefore, the image size of input is 2 ×
2048 × 128 since each input image have 128 signals from
different HIFU element combinations.

Fig. 3 shows the structure of the designed neural network.
TOF shift change is essential to derive the temperature [8].
ConvLSTM network [10] can extract both spacial and tempo-
ral features from channel data. We use the raw channel data
as a input which contains amplitude and TOF information. We
use time series channel data for ConvLSTM block input, thus
the network would learn the amplitude and TOF changes at
different temperature profiles. Convolution operation is done
with the output of ConvLSTM. Location vectors are added in
the network as additional input. It contains relative coordinates
of HIFU elements with respect to the receiving ultrasound
element in the HIFU coordinate system. After passing through
few convolution and fully connected layers, the vector is
reshaped into a 40 by 40 array. It passes through convolution
and transposed convolution layers and is flattened. Finally,
it is connected to a fully connected layer with 400 size
vector output and is reshaped to be a 20 by 20 image. The
output of the network is the temperature image, and the MRI
temperature images serve as target images. We use Adam as
optimizer. The lose function is the mean square error and the
learning rate is 1.5× 10−4. The image resolution is 1 mm by
1 mm.

Fig. 3. Designed neural network.

III. RESULT

Two independent networks are trained to reconstruct axial
and coronal temperature images. The Network is trained with
early stopper to avoid over-fitting. If the validation error does
not improve within 10 epochs, the network will stop training.
Since accuracy on the temperature in the heating center is more
important than in the background, a region of interest (ROI) is
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defined as a 20 by 20 area centered at the HIFU focal point.
Fig. 4 shows the reconstruction results of our neural network.
For each output image, we calculate the mean and maximum
absolute error in the ROI. On the test set, the mean error of
axial image is 0.57 ± 0.33 ◦C and the maximum error is 1.99
± 1.07 ◦C. The maximum error is 9.16 ◦C. The mean error
in coronal image is 0.33 ± 0.19 ◦C and the maximum error
is 1.54 ± 1.04 ◦C. The maximum error is 9.04 ◦C. A smaller
intersection with the heating area could explain the smaller
error in the coronal images than in the axial ones. Fig. 5 is
an example of comparison between reconstructed images and
MR temperature images in axial plane and coronal plane.

(a) (b)

(c) (d)

Fig. 4. Pixelwise absolute error in axial images in test set: (a) max error (b)
mean error. Pixelwise absolute error in coronal images in test set. (c) max
error (d) mean error.

IV. DISCUSSION
We propose a method to reconstruct temperature images

from raw ultrasound channel data using deep learning. The
setup is simple and affordable since our method only requires
to place the ultrasound elements on top of the target. We con-
duct experiments to collect data and train the neural network.
The results show the feasibility of the proposed ultrasound
thermometry method using ultrasound channel data and deep
learning for HIFU therapy monitoring.

The method uses initial ultrasound data before ablation,
therefore patient motion would be challenging since the chan-
nel data collected at initial status will be different from the
one in our network. In the future, we would not need initial
channel data in the input, instead, most recent temperature
information before patient motion and relative ultrasound data
shift after patient motion could be used together.

One of the limitations of this study is the relatively small
data capacity. Future work will include more data collection
for training and validation. We will collect more data with
various biological tissues and different element positions. To

(a)

(b)

Fig. 5. Example of reconstructed images, MR temperature images in coronal
plane and the differences between them. (a) in the coronal plane. (b) in the
axial plane. The image size is 20 by 20, and image pixel size is 1 mm by 1
mm. Temperature unit is in ◦C.

validate the method, in vivo and ex vivo experiments must also
be performed in the future. We believe the accuracy can be
further improved by tuning the hyperparameters and modifying
the neural network structure using more data. Simulation can
also be considered since collecting a sufficient large number
of data is difficult. We may be able to use data from both
simulation and experiments to train the network.
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