
A High Performance Ultrasonic System  
for Flaw Detection 

Boyang Wang and Jafar Saniie 
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu) 

Department of Electrical and Computer Engineering 
Illinois Institute of Technology, Chicago, Illinois, U.S.A. 

 
Abstract – In ultrasonic Nondestructive Evaluation (NDE), high 

frequency acoustic waves are used to test the integrity of materials. 
The detection of flaw echoes in the presence of high microstructure 
scattering noise is a challenging problem that requires advanced 
signal processing methods such as statistical analysis and pattern 
recognition algorithms. In this study, we designed and implemented 
a reconfigurable, high performance and low cost ultrasonic NDE 
platform based on Xilinx ZYNQ SoC. The system can generate high 
voltage pulses for exciting the ultrasonic transducers, receive the 
low voltage ultrasonic backscattered echoes, process the acquired 
data, and transmit and store the processed data to a host computer. 
in this study, we used machine learning algorithms as an alternate 
to conventional target echo recognition methods. In particular, 
Multilayer Perceptron Neural Network (MLPNN) is designed for 
ultrasonic flaw echo detection. The input to MLPNN is segments of 
backscattered signals, and regions within the Split Spectrum 
Processing (SSP) 2D distribution. The experimental results show 
that MLPNN can detect the flaw echo in the backscattered signal 
with very high precision.  

Keywords – Ultrasonic NDE System, ZYNQ SoC, Time-frequency 
Distribution, Neural Network, Flaw Detection 

I. INTRODUCTION 

Ultrasonic signal is widely applied in industrial, medical and 
research fields for many imaging and nondestructive testing 
applications. Ultrasonic nondestructive evaluation (NDE) is an 
effective and highly practical method to characterize thickness 
and check internal structure of the test subject with a high 
precision [1] [2]. In this study, we designed and implemented a 
reconfigurable, high performance and low cost ultrasonic NDE 
platform based on Xilinx ZYNQ SoC [3]. This system can 
generate high frequency ultrasonic pulse and capture the 
backscattered echoes at the frequency of 250 MSPS. The Field 
Programmable Gate Array (FPGA) on the ZYNQ SoC allows 
interfacing high speed peripherals such as Analog to Digital 
Converter (ADC) to the system through Direct Memory Access 
(DMA) and Double Data Rate (DDR) memory controller [4]. It 
can also free the computation power on the ARM processor by 
accelerating the signal processing with FPGA. With two stepper 
motors mounted on an ultrasonic testing tank, we can precisely 
move ultrasonic transducers along x and y axes. The acquired raw 
data will be pre-processed with time synchronization, band-pass 
filtering and re-sampling before storage. Applications of 
ultrasonic flaw detection [5] [6] [7] based on Multilayer 
Perceptron Neural Network (MLPNN) is introduced for this 
study. Time domain ultrasonic backscattered signal and its Split 
Spectrum Processing (SSP) 2D representation are used for 

training the MLPNN. Experimental results show that the 
MLPNN can precisely detect and estimate the ultrasonic flaw 
echo.  

Section II of this paper describes the hardware 
implementation of the ultrasonic NDE system including 
electronic parts, ultrasonic testing setup, and the raw data pre-
processing algorithms. Section III describes MLPNN method for 
training and detecting the flaw echoes. Section IV concludes this 
paper. 

II. HARDWARE IMPLEMENTATION 

In order to acquire the ultrasonic NDE data with pulse-echo 
method, it is necessary to have electronic components which 
include Ultrasonic Analog Front End (AFE), high frequency 
ADC and backend processor for signal processing and data 
management [8]. The selection of ultrasonic transducer is crucial 
for properly evaluating the test specimen. Ultrasonic testing 
system consists of water tank, stepper motors, and Arduino based 
motor controller for moving the transducer precisely along two 
axes. A desktop computer is used as the main system coordinator, 
the signal processor and the controller. In the following 
subsections, the electronic components, ultrasonic testing unit, 
experimental setups and the signal processing algorithms will be 
introduced in detail. 

A. Ultrasonic NDE System 

Figure 1 demonstrate the system block diagram. The system 
is built around Xilinx ZYNQ SoC which includes both dual core 
ARM A9 processor and the FPGA [9]. Ultrasonic AFE consists 
of ultrasonic pulser (MD1822DB2) [10], Transmit/Receive 
switch (TX810) [11], voltage-controlled amplifier (VCA8500) 
[12] and high frequency analog to digital converter (AD9467) 
[13] is integrated as a programmable and reconfigurable system 
to generate and receive ultrasonic signals. An Arduino with a 
motor driver shield that can be controlled through the serial port 
is used to move the piezoelectric transducer for scanning the 
material along x and y axes. This allows us to precisely scan the 
test specimen. The ultrasonic testing data is obtained by 
collecting data from steel blocks with different grain sizes and 
embedded flaws at know positions. The training datasets used in 
this study are obtained using the transducers with a center 
frequency of 5 MHz at the sampling rate of 250 MSPS with 16-
bit resolution. The acquired raw data is parsed and processed with 
the Python program and trained with neural network models built 
in the TensorFlow application. 
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B. Ultrasonic Experimental Setup 

Figure 2 displays the ultrasonic scanning system. With the 
help of two stepper motors, the ultrasonic transducers can be 
precisely moved along x and y axes. Users can manually adjust 
the position of the transducer on the z-axis. Four position limit 
switches are connected to the system to prevent the system failure 
caused by unexpected moving instructions. The test subject is 
submerged under the water to guarantee a good ultrasonic energy 
propagation. The control of the moving transducer is 
implemented by using Arduino with GRBL software library [14]. 
It is an open-source library for Computer Numerical Control 
(CNC) machine, laser engravers and 3D printers. A customized 
Python library is implemented in this study to gain full control of 
the GRBL system to cooperate with the ultrasonic testing system. 

 
Figure 1. Ultrasonic NDE System Block Diagram 

 
Figure 2. Ultrasonic Scanning System 

Figure 3 shows the test setup for acquiring ultrasonic 
backscattered signal. The transducer used in this test setup is 
immersion piezoelectric transducer centered at 5 MHz with a 
standard UHF type of connector. This type of transducer is 
designed to be used in liquid environment and has an impedance 
matching layer that deliver higher energy into the water. 
Ultrasonic backscattered signal is usually acquired in pulse echo 
type of ultrasonic testing system. As the pulse hits the specimen 
surface with an angle of 90 degrees, the transducer will receive 

echoes from front and back surface of the specimen. In between 
these higher amplitude echoes resides the backscattered signal 
generated by structural defects such as shrinkage cavities or slag 
inclusions. Backscattered signal is proven to be an effective 
indication of grain size, microstructures and flaws, etc. [15] [16]. 
As shown in Figure 3, a designed delay path between transducer 
and the upper surface of the specimen is there to reduce the effect 
of the surface echoes of the specimen on the backscattered signal. 
A lifter block under the test specimen serves as the same purpose.  

 
Figure 3. Test Setup for Ultrasonic NDE  

Figure 4(a) shows a backscattered signal and Figure 4(b) 
shows the amplitude spectrum of Figure 4(a).  A test steel block 
with size of 100 mm x 100 mm x 224 mm is placed in the water 
tank. The magnitude spectrum of the signal in Figure 4(b) shows 
that the signal is centered at 5 MHz frequency.  According to the 
position of the designed flaw in the target, we compute the 
position and label the flaw echoes in red of Figure 4(a). This 
obtained data will be later used for training the neural network. 

 

(a) 

(b) 

Figure 4. (a) Backscattered Signal (b) Power Spectrum Density of the 
Signal 

C. Raw Data Processing 

The signal preprocessing includes, excitation signal 
synchronization to compensate the mechanical vibration and 
imperfect system. Signal filtering, DC component removal, 
resampling, attenuation compensation and finally compression 
before storage [17] [18]. After the raw data is obtained from the 
system. We will apply some signal processing algorithms to the 
signal for preprocessing. This includes filtering, signal 
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resampling, attenuation compensation and DC component 
removal. After preprocessing of the ultrasonic back scatter signal, 
we can apply compression algorithm to the signal for a more 
efficient storage.  

Due to the vibration of the moving parts and the transducer 
moving trajectory is not perfectly parallel with the surface of the 
testing object, a synchronization in time domain must be 
implemented to compensate different delays in the acquired 
signals. This is implemented by correlate the excitation signal 
with the received signal, by finding the excitation signal position 
in the received signal, we can add different compensation delays 
to the received signal to shift the excitation to the same time.  

 The received signal will have extra frequency components. 
We are particularly interested in the frequencies from 1 MHz to 
10 MHz. A bandpass filter is applied to the signal to filter out the 
unwanted frequency component. After filtering, the signal will be 
resampled to 100 MSPS to ensure an optimized resolution and 
information compactness. Also, for some of the applications such 
as grain size characterization, attenuation compensation needs to 
be applied to the acquired signal to extract more information from 
the backscattered signal.  

For those applications that has limited storage area, signal 
compression algorithms can be applied to the acquired signal. In 
one of the previously developed compression algorithms based 
on Discrete Wavelet Transform (DWT) [19] [20], the 
compression ratio can reach up to 81.25% and the recovered 
signal has 98% correlation with the original signal.  

III. ULTRASONIC FLAW DETECTION WITH MLPNN 

Postprocessing of ultrasonic backscattered signal include 
time-frequency analysis, flaw echo detection, grain size 
estimation, etc. [21] [22] [23] [24].  This paper will brief the flaw 
detection using normalized time domain and SSP representation 
of backscattered signal segments based on MLPNN as an 
example application [25] [26]. 

 
Figure 5. Backscattered Signal and its SSP Representation 

Figure 5 shows the backscattered signal plotted in time 
domain an its SSP representation. As it can be seen from the 
figure, a target flaw echo can be found at around 17.5 µs. Its SSP 
representation reveals that the target flaw echo has relatively 
lower frequency compare to the non-flaw echoes. A window in 
time domain rolling through the obtained backscattered signals 

and their SSP representations to divide the signals into segments 
with the length of 0.5 µs. Fifty samples in time domain can cover 
approximately 1.8 mm from the target specimen. A total number 
of 27986 training samples are generated in time and time-
frequency domain as training input with labels. Figure 6(a) shows 
random selected signal time segments in time domain and Figure 
6(b) demonstrated the same batch of training input in time-
frequency domain. The flaw echoes are labeled in red and the 
non-flaw echoes are labeled in blue.  

 
Figure 6. Training Signals in Time Domain 

 
Figure 7. Neural Network Flaw Detection Testing Result 

TensorFlow is used in this study for building and training the 
MLPNN for ultrasonic flaw detection. Both time segments and 
SSP processed signal segments are used for training two neural 
networks with the same hyper parameters. After 50 epochs of 
training for training data generated by time segmentation and SSP 
algorithm, the time segments trained neural network reach the 
training accuracy of 99.86% and validate accuracy of 99.27%. 
The SSP processed data trained neural network has the training 
accuracy of 99.96% and validate accuracy of 99.31%, which is 
slightly better than using time segments as training data. Both 
algorithms can precisely detect the target flaw echoes from the 
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backscattered signal. However, using SSP representation for 
training the neural network will consume more computation 
power. Since the training input covers a period of approximately 
0.5 µs, a post-processing algorithm is implemented by stacking 
the data together to restore the time domain information. Figure 
7 shows the testing result of the ultrasonic flaw detection 
algorithm using time segments. Figure 7(a) has a flaw echo with 
slightly higher intensity which can be precisely detected. Figure 
7(b) demonstrate a hidden flaw echo that is detected by the 
algorithm with lower confidence level. 

IV. CONCLUSION 

In this paper, a high-performance ZYNQ SoC based 
ultrasonic NDE system is designed and implemented to capture 
and analyze the ultrasonic backscattered signal. This system is 
real-time, high performance, reconfigurable, low cost, easy to 
operate and reliable. The proposed system has the capability of 
real-time data collection and flaw detection with the FPGA on 
chip. A test setup for acquiring backscattered signal from the test 
specimen is introduced. An immersion type transducer centered 
at 5 MHz is used to conduct the experiments. Both preprocessing 
of the ultrasonic raw data and postprocessing for ultrasonic flaw 
detection using backscattered signal are introduced. 
Experimental results clearly support that the algorithm based on 
neural network can successfully detect the flaw echo in the 
backscattered signal. The system is capable of precisely detecting 
highly masked flaw signals (i.e., about zero dB SNR or less).  
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