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Abstract—In clinical applications of super-resolution 

ultrasound imaging, the complete reconstruction of the 

microvasculature will not be feasible due to several limiting factors 

such as measurement times, concentrations of microbubbles, or 

motion artefacts. Therefore, it is of interest to estimate the degree 

of reconstruction in order to establish reasonable measurement 

protocols and to derive meaningful morphological and perfusion 

parameters. Here, we show that the filling of the voxels with the 

detected microbubbles (i.e. the reconstruction), can be well 

modeled with a zero-inflated Poisson (ZIP) process. For the first 

time – to our knowledge – we derived a closed-form solution for 

the maximum likelihood estimator (MLE) of the relevant 

parameters of a ZIP process. From these parameters, the degree 

of reconstruction can be assessed from the ratio of the number of 

filled voxels to the number of voxels that are expected to be filled 

after infinite time.  

We show, that in preclinical and clinical measurements a 

degree of reconstruction between 38% and 74% was achieved. We 

also demonstrate that reliable estimates can be achieved earlier 

with the MLE than with the least-squares fit to the data as 

previously proposed. Additionally, the MLE is very easy to 

implement as the counts observed at the end of the measurement 

period provide all necessary data for parameter estimation. 

Keywords—closed-form, maximum-likelihood estimator, 

measurement times, saturation model, ultrasound localization 

microscopy, zero-inflated Poisson process 

I. INTRODUCTION 

The main interest in super-resolution imaging based on 

ultrasound localization microscopy (ULM) lies in the 

reconstruction of the microvasculature to analyze its 

morphological properties and to visualize and characterize the 

perfusion of relevant tissues. However, in clinical applications 

it will not be possible to reconstruct the complete 

microvasculature because of e.g. limited measurement times, 

restricted concentrations of microbubbles (MB), or motion 

artefacts.  

To define and derive relevant and meaningful parameters in 

clinical applications, the degree of reconstruction of the 

microvasculature after limited measurement times is important 

for normalization. Recently, we showed that the percentage of 

reconstruction can be assessed based on an exponential 

saturation model and a corresponding least-squares fit (LSF) to 

the binary filling of the pixels over time [1, 2]. Here, we present 

an extended statistical model and a closed-form maximum 

likelihood estimator for the vascular filling problem, which has 

lower variance and allows to estimate the reconstruction degree 

from the final count map without the need of observations over 

time. 

II. THEORY 

A. Statistical Model for ULM Count Maps 

Super-resolved count maps are usually built by counting in 
each voxel the number of MB that have passed during the 
measurement time [3, 4]. Then, the number of counts 𝑘  are 
encoded in different colors (see Fig. 1). 

Counting processes of independent events at a constant rate 
are typically modeled with a Poisson distribution. 
Correspondingly, in voxels that belong to a vessel the 
probability for a certain number of passed MB can be modeled 
by  

𝑃𝐶{𝑋(𝑡) = 𝑘} =
Λ𝑘

𝑘!
𝑒−Λ, Λ = 𝜆𝑡 (1) 

where 𝑋(𝑡)  is the number of passed MB, 𝑘  the number of 
counts, 𝜆 the expected number of counts per voxel, and 𝑡 the 
measurement time. 

However, for an empty voxel without counts it is unknown 
whether just no MB passed by or whether this voxel does not 
contain a vessel (indicated by the question mark in Fig. 1).   

We model the probability that a voxel contains a vessel by 
𝑃𝑣 . After infinite time the ratio of filled voxels to the total 
number of voxels would approach this value, which thus can 
also be used to measure the clinically relevant parameter relative 
blood volume (rBV). Then, the probability of showing no counts 
(𝑘 = 0) is the sum of the probability of a vessel voxel with no 
counts 𝑃𝑣 ⋅ 𝑃𝐶{𝑋(𝑡) = 0} and the probability of an empty voxel 
1 − 𝑃𝑣 . This results in more frequent zero-valued observations 
than predicted with a standard Poisson distribution and is 
modelled by the so-called zero-inflated Poisson (ZIP) 
distribution [5]: 
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𝑃{𝑋(𝑡) = 𝑘} = {

(1 − 𝑃𝑣) + 𝑃𝑣𝑒−Λ for 𝑘 = 0

𝑃𝑣

Λ𝑘

𝑘!
𝑒−Λ for 𝑘 > 0

. (2) 

The filling of the whole image with 𝑁 voxels is modeled as 
the compound distribution of a vector-valued stochastic process 

𝑿(𝑡) = (𝑋1(𝑡), … , 𝑋𝑁(𝑡))
𝑇

. Using the sign function 

sgn(𝑘) = {
1 for 𝑘 > 0
0 for 𝑘 = 0

  (3) 

and assuming stochastically independent and identically 

distributed voxels the joint probability mass function to observe 

the count vector 𝒌 = (𝑘1, … , 𝑘𝑁)𝑇  is 

𝑃{𝑿 = 𝒌} = ∏(1 − 𝑃𝑣(1 − 𝑒−Λ))
1−sgn(𝑘𝑛)

𝑁

𝑛=1

     

    × (𝑃𝑣

Λ𝑘𝑛

𝑘𝑛!
𝑒−Λ)

sgn(𝑘𝑛)

. 

(4) 

B. Maximum Likelihood Estimator 

For this probability, the Maximum Likelihood Estimator 
(MLE) can be deduced by partially deriving the log-likelihood 
ln 𝑃{𝑿 = 𝒌} with respect to 𝑃𝑣 and Λ and equalizing it to zero. 
This results in 

Λ̂ = 𝑊0 (−
𝑇2

𝑇1

𝑒
−

𝑇2
𝑇1) +

𝑇2

𝑇1

, (5) 

with 𝑊0 being the main branch of the Lambert’s W-function and 

𝑃̂𝑣 =
𝑇1

𝑁(1 − 𝑒−Λ̂)
=

𝑇2

𝑁Λ̂
, (6) 

where 

𝑇1(𝑿) = ∑ sgn(𝑋𝑛)

𝑁

𝑛=1

, (7) 

and  

𝑇2(𝑿) = ∑ 𝑋𝑛

𝑁

𝑛=1

. (8) 

𝑇2 corresponds to the sum of all counts in the image (see Fig. 
1 a) for the measurement time 𝑡. 𝑇1 correspond to the number of 
filled voxels, i.e. the sum over the binarized count map (see Fig. 
1 b). The Lambert’s W-function is e.g. implemented in Matlab 
as lambertw (Mathworks, Natick, MA, USA).  

In contrast to other formulations [6], this is a closed-form 
derivation of the MLE for a ZIP process. 

C. Degree of Reconstruction 

The degree of reconstruction DOR can be directly assessed 

with 

DOR =
𝑇1 𝑁⁄

𝑃̂𝑣

= 1 − 𝑒−Λ̂. (9) 

III. EXPERIMENTAL VALIDATION 

The experimental validation was carried out with data from 

preclinical and clinical measurements that were acquired for 

earlier studies [7, 8]. 

A. Preclinical Data 

All animal experiments were approved by the governmental 

animal care and use committee (LANUV).  

The data of murine xenograft tumors (A431, A549, and 

MLS) were acquired using a Vevo 2100 system (FUJIFILM 

Visualsonics, Toronto, ON, Canada; MS-550D transducer, 40 

MHz center frequency) during the destruction-replenishment 

sequence. The MB were fabricated with polybutyl-

cyanoacrylate (PBCA) [9]. The frames were recorded with a 

frame rate of 50 Hz.  

After a rigid motion compensation, the MB were localized 

in the B-mode images. MB (foreground) and tissue 

(background) were separated using a rank filter. The positions 

of the MB were computed by calculating the intensity weighted 

centroid [7]. The tracking of the MB was carried out with the 

Markov Chain Monte Carlo Data Association (MCMCDA) 

algorithm. Details of the tracking algorithm can be found in 

[10]. 

 

 

 

(a)  (b) 

Fig. 1. Illustration of a count map of a super-resolved US image. (a) Original counts in a count map. The question mark visualizes the 

unknowingness whether just no microbubble passed or whether the voxel does not belong to a vessel. (b) Binarized version of the count map.  
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B. Clinical Data 

The clinical study was approved by the RWTH Aachen 

University ethics committee and registered at clinicaltrials.gov 

under the number: NCT03385200. Written informed consent 

was obtained from all patients. 

The clinical data of a triple negative breast carcinoma were 

acquired with an Aplio 500 (Canon Medical Systems, Otaware, 

Japan; PLT 1005BT transducer, 10 MHz center frequency) 

after injecting SonoVue (Bracco, Milan, Italy). The frames 

were recorded at a frame rate of 15 Hz [8]. 

Because the MB were not visible in the B-mode images they 

were localized in the contrast mode sequences. These were 

convolved in 2D with a Gaussian kernel matching the size of 

the point spread function of the MB. Then, the local intensity 

maxima were detected. These positions were corrected by the 

motion estimated in the B-mode images [8]. The tracking of the 

MB was also carried out with the MCMCDA algorithm. 

C. Count Maps, Coverage, and Degree of Reconstruction 

By accumulating the positions of the tracks in image 
matrices, count maps are computed. For the preclinical data, the 
grid size was 5 µm, for the preclinical data 10 µm [7]. Generally, 
for the ZIP model the pixel sizes should not become much larger 
than the smaller vessel sizes. Then, 𝑃𝑣 can be used to model the 
rBV.  

The ratio of 𝑇1  to the total number of pixels 𝑁 within the 
ROI is called coverage 𝐶. It is computed for increasing 
measurement times in steps of 50 frames. The coverage of the 
full reconstruction of the vasculature is expected to be related to 
the rBV as discussed above.  

The final coverage estimated with the previously proposed 

LSF is named 𝐶̂∞  [1, 2]. The equivalent vessel probability 

estimated with the proposed MLE is named 𝑃̂𝑣. The degree of 
reconstruction DOR  at the end of the measurement time is 
calculated by Eq. (9). 

IV. RESULTS 

In Fig. 2, the results of exemplary preclinical data that 
visualize the main findings are shown. Generally, at the end of 

the measurement time, the 𝐶̂∞  (red line) and 𝑃̂𝑣  (blue line) 
estimated with the LSF and with the MLE, respectively, 
approach each other. It can also be seen, that a certain number 
of counts and thus a certain measurement time is necessary to 

get reliable results: At the beginning of the measurements (for 
very few counts) the estimated values are always too low. 
Nevertheless, 𝑃𝑣 can be earlier reliably estimated. By trend, the 

differences between the estimations of 𝐶̂∞ and 𝑃̂𝑣 are smaller for 
low rBV. In Fig. 3, again data of a preclinical measurement is 

shown to illustrate that the estimation of 𝐶̂∞ can also completely 
miss the mark. This effect was only observed for the application 
of the LSF. Also, in Fig. 4 showing clinical data the better 
performance of the MLE is clearly visible. Generally, the MLE 
yields more stable estimates. 

After 40 s (preclinical measurement) or about 90 s (clinical 
measurements), a degree of reconstruction DOR of 38% to 74% 
was achieved.  

 

 
 

Fig. 3. Additional example for coverage 𝐶, final coverage 𝐶̂∞ 

(LSF), and vessel probability 𝑃̂𝑣 (MLE) that was excluded from 
further evaluations because of an artefact at frame 1000.  

 

 

 
 

Fig. 4. Coverage 𝐶, final coverage 𝐶̂∞ estimated with the LSF, and 

vessel probability 𝑃̂𝑣 estimated with the MLE for increasing 

measurement times for triple negative breast carcinoma (example). 

 

   
(a) (b) (c) 

Fig. 2. Coverage 𝐶, final coverage 𝐶̂∞ estimated with the LSF, and vessel probability 𝑃̂𝑣 estimated with the MLE for increasing measurement times for 

exemplary murine xenograft tumors of type A431 (a), A549 (b), and MLS (c). 
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V. DISCUSSION AND CONCLUSION 

By modeling the filling of count maps based on a zero-

inflated Poisson process, a closed-form MLE was derived to 

assess the degree of reconstruction of the microvasculature in 

super-resolution imaging. On preclinical and clinical data, we 

showed that after feasible measurement times the degree of 

reconstruction can be very different. This makes it clear that the 

assessment of the DOR is essential for the correct interpretation 

of morphological and perfusion parameters that are derived 

from super-resolved US images and for the specification of 

measurement protocols. We also showed that the MLE 

outperforms the LSF method because it approaches stable 

estimates earlier. Furthermore, the derived closed-form MLE is 

very easy to implement and computationally efficient as all 

information is contained in the final count map without the need 

of evaluating the filling over time.  
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