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Abstract—It has been shown that deep neural networks can
accuratly segment the left ventricle (LV), myocardium and left
atrium in apical two and four chamber (A2C and A4C) views.
While segmentation of apical long-axis (ALAX) views is quite
similar to A2C and A4C, there is one major difference; the left
ventricular outflow tract (LVOT) which restricts the myocardium.
The objectives of this work were to accurately segment ALAX
views, investigate if transfer learning from A2C/A4C improves
accuracy, and study how a single network can learn to segment
all three views.

The CAMUS dataset of 500 patients together with an addi-
tional dataset of 106 patients with ALAX views were used for
training and testing using 10-fold cross-validation. The results
showed that by training from scratch the neural network was
able to segment ALAX views, but with a lower accuracy to
that of A2C/A4C views. Transfer learning only slightly improved
mycoardium accuracy (0.77 to 0.78), but was statistically signif-
icant (p-value 0.001). Multi-view segmentation with the baseline
network showed a reduction in accuracy, resulting in 38 cases
of incorrect segmentations in terms of LVOT. The proposed
network reduced the number of incorrect segmentations to 8,
and achieved the best overall accuracy in terms of dice score
where the improvement in myocardium segmentation accuracy
(0.776 to 0.786) was statistically significant (p-value 0.005).

Index Terms—deep learning, echocardiography, segmentation,
apical long axis, transfer learning

I. INTRODUCTION

Automatic segmentation of the left ventricle (LV) in apical
two and four chamber (A2C and A4C) ultrasound views has
been studied for several decades. In recent years, many have
demonstrated that deep neural networks can do the same [1]–
[3], and even in real-time [4]. The CAMUS study in 2019 [5]
demonstrated the superiority of deep neural networks over the
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Fig. 1. An example of left ventricular segmentation in apical long axis and
apical four chamber ultrasound views. While not present in apical two and
four chamber views, the left ventricular outflow tract restricts the myocardium
(green) in apical long axis views.

more traditional approaches. To our knowledge, there are no
studies so far considering the segmentation of apical long axis
(ALAX) views using deep neural networks.

Segmentation of ALAX views is quite similar to A2C/A4C
views, except for one major difference: the left ventricular
outflow tract (LVOT) in ALAX views, which restricts the
myocardium as shown in Fig. 1 The ALAX view is important
in order to cover all parts of the LV wall from the apical insoni-
fication angle. Together, recordings from the A2C, A4C and
ALAX views provide possibilities for quantitative analysis of
all myocardial segments. Thus, these three views are typically
used for strain measurements such as global longitudinal strain
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(GLS) and regional strain [6]. Automatic segmentation of the
ALAX view may reduce the high inter-observer variability and
time spent on these measurements by removing manual user
initialization.

The main objective of this work was to accurately segment
ALAX views, and secondly, study how a single network can
learn to accurately segment all three apical views.

II. METHODS

In this article, four experiments were conducted to find the
best approach to segment the LV and myocardium from all
three apical views: 1) training an encoder-decoder network
from scratch to segment ALAX, 2) using transfer learning
from the CAMUS dataset 3) training a network from scratch
to segment all three views and 4) using a novel multi-view
segmentation network which can segment all three views. In
the next sections, the network and training setup for each of
these experiments are described.

A. Baseline segmentation network

In the first experiment, the U-net 1 network used to segment
A2C and A4C views in the CAMUS study [5] was trained
from scratch to segment ALAX views. This network, now
referred to as the baseline network, is a fully convolutional
encoder-decoder network with max pooling in the encoder
stage, and 2× 2 repeat upsampling in the decoder stage. The
network has about 2 million parameters.

B. Transfer learning from A2C/A4C segmentation

The image and the segmentation of A2C/A4C and ALAX
views are quite similar, except for the LVOT in ALAX views.
Thus, it’s reasonable to assume that most of the features used
for segmenting A2C/A4C are useful for segmenting ALAX
views as well. In this second experiment, the U-net 1 network
from the CAMUS study, already trained on A2C/A4C views
was used for transfer learning. This pretrained A2C/A4C
network was fine-tuned on the ALAX dataset by training with
a reduced learning rate of 0.0005 compared to the learning
rate 0.001 used to pretrain the network.

C. Multi-view segmentation using baseline network

In this experiment, the baseline segmentation network was
trained to segment all three views. Since there were 500
patients for A2C and A4C views, and only 106 patients for
ALAX views, the ALAX views were repeated ten times in
each epoch to deal with this data balancing issue.

D. Multi-view segmentation using proposed network

When performing segmentation, it is usually known which
view is being processed beforehand. The current view can
either be specified manually by the operator or automatically
using deep neural networks [7]. This inspired the creation of
a novel network architecture which has two inputs: 1) the
ultrasound image, and 2) a binary scalar indicating whether
the image is a A2C/A4C (0) or a ALAX (1) view.

Since encoder-decoder segmentation networks usually only
have convolutional layers, and no dense layers, the binary
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Fig. 2. Proposed neural network for multi-view cardiac ultrasound segmen-
tation. The network has two inputs: the ultrasound image and a binary scalar
indicating whether the input is A2C/A4C or ALAX image. In each encoder
and decoder block of the U-net structure, the binary scalar is repeated to
create a 2D image. N 1× 1 convolutions are then applied to this binary 2D
image. The resulting tensor is multiplied with the tensors in the U-net before
down- and upsampling. The pink areas highlights the parts that were added
to the baseline network.

scalar has to be combined with 2D feature maps. To this end,
the binary scalar was duplicated to create a 2D image of the
same size as the ultrasound image. This binary image is passed
on to a layer of N 1 × 1 convolutions, resulting in a feature
map of N channels. This feature map is then multiplied with
features from the segmentation network in both the encoder
and decoder as shown in Fig. 2. The idea is that the neural
network can learn to disable features which are only needed
for A2C/A4C or ALAX by using the binary scalar. This is
repeated for every level in both the encoder and decoder stage
of the U-net structure as displayed in Fig. 2. The proposed
network has only 1,920 more parameters than the baseline
network, which comes from the added 1× 1 convolutions.

E. Datasets

The publicly available CAMUS dataset of 500 patients
was used in this study as a source of annotated A4C and
A2C views. For the ALAX views, a new dataset was created
consisting of images from 106 patients. These images were
segmented using the same protocol as used for making the
CAMUS dataset: For each patient, two frames corresponding
to the end-diastolic (ED) and end-systolic (ES) time points
were selected for segmentation. In these frames, the LV,
the myocardium and the left atrium were delineated using a
cardinal spline contour defined from a set of points manually
selected from the image. The only difference was, that when
annotating the ALAX views, the myocardium segmentation
was ended at the beginning of the LVOT as shown in Fig. 1.

III. RESULTS

For each experiment, the dice scores of the LV and the
myocardium were measured and collected in Table I. The
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Fig. 3. Two examples that were incorrectly segmented in terms of the LVOT using the baseline multi-view segmentation network, while segmented correctly
with the proposed network. The green lines are the expert’s delineation, the red lines correspond to edges of the neural network’s segmentation output, and
yellow means overlap between the two. The top row is a true ALAX image, which is interpreted and segmented as A2C by the baseline network and the
LVOT segmented as myocardium. The bottom row is an A2C image, which is interpreted as a ALAX image by the baseline network and therefore incorrect
segmented as having an LVOT. The total number of incorrect segmentation’s in terms of LVOT were reduced from 38 to 8 using the proposed network.

Best Median Worst

Fig. 4. The best, median and worst case ALAX segmentations in terms of LV and myocardium dice scores using the proposed multi-view segmentation
network on the ALAX dataset. The green lines are the expert’s delineation, the red lines correspond to edges of the neural network segmentation, and yellow
means overlap between the two.
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TABLE I
CROSS VALIDATION RESULTS WITH MEAN DICE SCORE AND STANDARD DEVIATION OF ALL 10 FOLDS.

Experiment Dice Left Ventricle Dice Myocardium Dice Left Atrium

ALAX A4C/A2C ALAX A4C/A2C ALAX A4C/A2C

Baseline network trained with A2/4C only 0.926± 0.05 0.861± 0.06 0.894± 0.09
Baseline network trained with ALAX only 0.917± 0.03 0.770± 0.07 0.881± 0.09

Transfer learning from CAMUS dataset 0.918± 0.03 0.780± 0.07 0.890± 0.06
Multi-view segmentation with baseline network 0.920± 0.03 0.922± 0.05 0.776± 0.08 0.856± 0.06 0.886± 0.08 0.892± 0.09
Multi-view segmentation with proposed network 0.921± 0.03 0.924± 0.04 0.786± 0.08 0.862± 0.05 0.892± 0.08 0.893± 0.09

scores were measured on the entire dataset using 10 fold cross-
validation. As done in the CAMUS study [5], all neural net-
work segmentation outputs were post-processed by filling any
holes in the segmentation and removing any small regions. For
comparison, dice scores obtained with the baseline network
trained and tested on the A4C/A2C dataset, are also included
in the table. For the multi-view segmentation experiments, the
number of incorrect segmentations in terms of the LVOT was
established as the number of ALAX images segmented without
an LVOT, and the number of A2C/A4C images segmented
with an LVOT. With the baseline network, 9 ALAX and
29 A2C/A4C images were segmented incorrectly. With the
proposed network, the number of incorrect segmentations
decreased to 0 and 8 for ALAX and A2C/A4C respectively
as shown in Fig. 3. Fig. 4 contains ALAX examples of
the best, median and worst segmentation in terms of LV
and myocardium dice score using the proposed multi-view
segmentation network.

IV. DISCUSSION

The results in Table I show only a small improvement in
using transfer learning from A4C/A2C in terms of segmen-
tation accuracy for ALAX views. A Wilcoxon signed-rank
test showed that only the improvement in myocardium seg-
mentation accuracy was statistically significant with a p-value
of 0.001. Multi-view segmentation reduces the accuracy of
both ALAX and A4C/A2C views using the baseline network,
mainly because it is not able to correctly identify the view as
either ALAX or A2C/A4C in a total of 38 cases. However, by
using the proposed network with an additional input specifying
whether the input is an ALAX or A4C/A2C view, this issue
is significantly reduced to only 8 cases, thereby achieving the
overall highest segmentation accuracy of all experiments. Still,
the improvements in the dice scores are very small. Therefore
a Wilcoxon signed-rank test was performed, revealing that
only the improvement in myocardium segmentation accuracy
was significant with a p-value of 0.005. This indicates that
it is advantageous for the segmentation network to know
which view is being segmented in terms of myocardium
segmentation accuracy. This might be because the myocardium
is segmented differently in these views, but it might also be
due to inter-observer variability since the two datasets with
the different views were annotated by two different experts.
Another approach to having a network with an additional input
value, could be to extend the neural network and have it

perform multi-task learning, and learn to perform both view
classification and segmentation at the same time. However,
this might result in reduced runtime.

V. CONCLUSION

In this work, the left ventricular segmentation of apical
long axis views from cardiac ultrasound was investigated.
Transfer learning from a neural network trained on apical two
and four chamber views improved accuracy slightly, but the
best myocardium segmentation accuracy was achieved by a
novel multi-view segmentation network which was able to
successfully segment all three apical views. The multi-view
network achieved this by training on all types of views and
integrating a second input in the form of a binary scalar
indicating whether the input image is an apical long-axis view.

REFERENCES

[1] E. Smistad, A. Ostvik, B. Haugen, and L. Lovstakken, “2D left ventricle
segmentation using deep learning,” in IEEE International Ultrasonics
Symposium, IUS, 2017.

[2] J. Zhang, S. Gajjala, P. Agrawal, G. H. Tison, L. A. Hallock, L. Beussink-
Nelson, M. H. Lassen, E. Fan, M. A. Aras, C. Jordan, K. E. Fleischmann,
M. Melisko, A. Qasim, S. J. Shah, R. Bajcsy, and R. C. Deo, “Fully Au-
tomated Echocardiogram Interpretation in Clinical Practice,” Circulation,
vol. 138, no. 16, pp. 1623–1635, oct 2018.

[3] M. H. Jafari, H. Girgis, Z. Liao, D. Behnami, A. Abdi, H. Vaseli,
C. Luong, R. Rohling, K. Gin, T. Tsang, and P. Abolmaesumi, “A Uni-
fied Framework Integrating Recurrent Fully-Convolutional Networks and
Optical Flow for Segmentation of the Left Ventricle in Echocardiography
Data,” in DLMIA, vol. 10553. Springer International Publishing, 2018,
pp. 29–37.

[4] E. Smistad, A. Ostvik, I. Mjal Salte, S. Leclerc, O. Bernard, and L. Lovs-
takken, “Fully Automatic Real-Time Ejection Fraction and MAPSE
Measurements in 2D Echocardiography Using Deep Neural Networks,” in
2018 IEEE International Ultrasonics Symposium (IUS), vol. 2018-Octob.
IEEE, oct 2018, pp. 1–4.

[5] S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, F. Cervenansky, F. Espinosa,
T. Espeland, E. A. R. Berg, P.-M. Jodoin, T. Grenier, C. Lartizien,
J. Drhooge, L. Lovstakken, and O. Bernard, “Deep Learning for Seg-
mentation using an Open Large-Scale Dataset in 2D Echocardiography,”
IEEE Transactions on Medical Imaging, pp. 1–1, 2019.

[6] R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong,
L. Ernande, F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova,
P. Lancellotti, D. Muraru, M. H. Picard, E. R. Rietzschel, L. Rudski,
K. T. Spencer, W. Tsang, and J.-U. Voigt, “Recommendations for Cardiac
Chamber Quantification by Echocardiography in Adults: An Update
from the American Society of Echocardiography and the European
Association of Cardiovascular Imaging,” Journal of the American Society
of Echocardiography, vol. 28, no. 1, pp. 1–39.e14, jan 2015.

[7] A. Østvik, E. Smistad, S. A. Aase, B. O. Haugen, and L. Lovstakken,
“Real-Time Standard View Classification in Transthoracic Echocardiog-
raphy Using Convolutional Neural Networks,” Ultrasound in Medicine &
Biology, vol. 45, no. 2, pp. 374–384, feb 2019.

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

MoA3.1


