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Abstract—In ultrasound localization microscopy, microbubbles
are localized and tracked in contrast enhanced ultrasound
sequences to reconstruct the microvasculature. The accurate
localization of MBs is essential to achieve super-resolved images,
but it is strongly disturbed by tissue motion. Therefore, the MB
positions have to be corrected for this tissue motion. Usually,
a foreground-background separation is applied, to localize the
MBs in the foreground, and to estimate the tissue motion in the
background for the following correction of the MB positions.
However, we recently showed that strong interferences can be
introduced into motion estimation, depending on the choice of
separation algorithm. Therefore, we propose to apply an optical
flow approach to the non-separated B-mode images. During non-
rigid motion estimation, the regions of the MBs are excluded.
This leads to incomplete vector fields whose gaps are estimated
afterwards.

With simulations, we show an improvement of the localization
accuracy over other approaches proposed, e.g. a reduction of
the displacement error of 40 µm to around 6 µm. On preclinical
data, we achieved an increased correlation between the motion
corrected frames. Furthermore, the reconstructed microvascula-
ture appears clearer.

Index Terms—Localization of microbubbles, optical flow, ul-
trasound localization microscopy, super resolution, tissue motion
estimation

I. INTRODUCTION

With ultrasound localization microscopy (ULM), super-
resolved images of the microvasculature of organs and tumors
can be evaluated. The technique is based on the localiza-
tion and tracking of single microbubbles (MBs) in contrast-
enhanced ultrasound (CEUS) sequences [1]. A correction
for tissue motion is important to avoid artefacts because
of false localizations [2]. There are several techniques for
motion estimation available: Affine motion estimation with
cross correlation [3], a two-stage motion correction based on
an affine motion correction followed by a B-spline motion
correction for non-rigid motion [4][2], several block matching
[5][6] and optical flow algorithms [7].

This work was supported by the DFG under the Grants SCHM1171/4-1
and KI1072/11-1.

One challenge of tissue motion estimation in CEUS data
is the disturbance by MBs. Widely used is a foreground-
background separation to use the MB image for MB detection
and the tissue image for motion estimation without distur-
bances of the MBs [2][3]. Recently, we have presented that the
separation of the background can lead to uncertainties in the
motion estimation [8]. Either, there are still MBs present, or
the speckle is modified by the filtering and thus, errors in tissue
motion estimation occur. The higher the MB-concentration,
the higher is the influence of MBs. Therefore, we developed
an approach to estimate the tissue motion on the unfiltered
CEUS image by an optical flow approach. During motion
estimation, the MBs and their point-spread functions (PSFs)
are eliminated. The missing values in the vectorfields are
estimated afterwards to get the complete vectorfields. For
completion, we either use a motion model, computed by a
principle component analysis (PCA), or the alternating least
squares algorithm (ALS). Comparisons of the new approaches
and the motion estimation on the separated background images
are carried out on Field II simulations of CEUS sequences of
non-rigid motion, as well as on preclinical mouse data.

II. MATERIAL AND METHODS

A. Optical Flow Approach

The non-rigid, in-plane tissue motion estimation is applied
by an optical flow approach [9]. For the optical flow term,
an L2-norm is used and the regularization is computed by an
L1-norm to preserve the edges:

min
Vx,Vz

∫∫
ΩTiss

α

2
||∇ft2 · V + ft2 − ft1||2 +

β (||∇Vx||1 + ||∇Vz||1) dx dz

(1)

Vx and Vz are the estimated vecorfields, ft1 and ft2 frames at
two time points, α and β are weighting factors.

The CEUS data points that are not influenced by the MBs’
PSFs are defined as ΩTiss. Since the vectorfields are only
computed for ΩTiss, incomplete vectorfields result. The missing
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values at the MB positions are evaluated after the tissue motion
estimation. For that, recurring motion in the US sequences
is assumed. Dependent on the processed data, there are two
different methods used to complete the vectorfields: the com-
putation of a motion model with the principle component
analysis (PCA) and the alternating least squares algorithm
(ALS). The implementation was carried out with flexBox
([10]) which uses the Chambolle-Pock algorithm to solve
minimization problems. The estimation of the missing values
is carried out separately for lateral and axial displacements.

1) Motion Model with Principle Component Analysis
(PCA): Frames prior to the MB injection enable the tissue
motion estimation without disturbing MBs. Hence, complete
vectorfields Vref are computed. A matrix with the vectorized
vectorfields in the columns is generated and a principle com-
ponent analysis (PCA) is evaluated to get the motion model

Vref = UDUT + µ, (2)

with U a matrix with the eigenvectors, D a diagonal matrix
with eigenvalues and µ the vectorized mean vectorfield. The
motion model is used to complete the vectorfield of each frame
t after MB injection individually:

min
d
||Ũ ·D · d− (Ṽ (t)− µ̃)||22. (3)

Thereby, d is a vector to weight each component of the PCA.
It minimizes the error between motion model and the known
components of the vectorfield (Ũ , µ̃). The complete vectorfield
Vrec is reconstructed with

Vrec(t) = U ·D · d+ µ. (4)

2) Alternating Least-Squares Algorithm (ALS): If all
frames contain MBs, only incomplete vectorfields are eval-
uated. To estimate the missing values, the alternating least-
squares algorithm (ALS) [11] is applied which is generally
used for matrix completion. It is based on the factorization
Vrec ≈ PTS of a matrix with the vectorized vectorfields in its
coloumns. The missing values are estimated by minimizing
the error between the known parts of the vectorfields Ṽ and
the factorization:

min
P,S
||Ṽ − Ṽrec||2 + λ(||P ||22 + ||S||22) (5)

P and S are alternately estimated, using a least squares
minimization. λ is a weighting factor.

B. Simulations

The simulations were carried out with the Field II toolbox in
MATLAB [12]. The MBs were assumed to be point scatterers
of a higher intensity that flow with random velocities along
tracks of random directions, lengths and positions. The veloc-
ity range was chosen from 0.5 mm s−1 to 3 mm s−1, according
to the velocities in capillaries [13]. The tissue images were
simulated using 20 scatterers per resolution cell to get tissue
mimicking speckle pattern [14]. The intensities and the vector
fields with non-rigid motion were chosen according to clinical
datasets of a breast tumor [15]. 20 frames were simulated with

varying displacements.The scatterers were shifted from frame
to frame. The transducer settings were chosen according to the
clinical 10 MHz PLT 1005BT linear transducer of the Aplio
500 (Canon Medical Systems, Otawara, Japan), with a frame
rate of 16 Hz. The pixel dimensions were 70 µm in lateral and
axial direction. The displacements from frame to frame were
80 µm at maximum.

C. Preclinical Mouse Data

As preclinical data, a CEUS sequence of a subcutaneous
mouse tumor, type A-431 is evaluated. It was acquired with
a 40 MHz linear transducer of the Vevo 3100 (FUJIFILM
Visualsonics, Toronto, ON, Canada). The frame rate was 56 Hz
and 5120 frames were acquired. The sequence was separated
into foreground (MB) and background (tissue), using a rank
filter, to get the MBs’ PSFs excluded during motion estimation.
For processing, the CEUS sequence was subdivided into sub-
sequences according to the breathing cycle, because the breath-
ing leads to the largest displacements. Within each sequence,
the tissue motion was estimated from frame to frame. These
frame-to-frame displacements were accumulated to the dis-
placement between the reference frame in each sequence and
each frame of the sequence. Then, the displacement between
one global reference frame and all local reference frames was
computed. The final MB image was separated from the motion
corrected sequence, and the MBs were detected by searching
for local maxima after a convolution with a Gaussian kernel
and a thresholding. Afterwards, the MBs were tracked with
the Markov Chain Monte Carlo Data Association (MCMCDA)
algorithm [16].

Apart from applying the new approaches with optical flow
and PCA, or rather ALS, the optical flow was applied to
separated foreground images. The separation was carried out
with the singular value decomposition (SVD) [17] as well as
with the median filter [16].

D. Quality Criteria

The accuracy of the estimated vectorfields from the simu-
lations was evaluated by the absolute endpoint error AEE:

AEE =
1

NMB

NMB∑
i=1

√
(Vx − Vx,GT)2 + (Vz − Vz,GT)2. (6)

It describes the absolute differences of the estimated and the
ground truth vectorfields Vx,GT and Vz,GT, averaged for each
frame. Only the parts, influenced by the MB PSFs, which are
important for the further processing, were considered.

For comparing the motion estimation results of the pre-
clinical mouse data after applying the motion correction, the
normalized cross correlation NCC was computed between the
global reference frame fref and each motion corrected frame
fi:

NCC =
(fref − f̄ref) ∗ (fi − f̄i)

σfref · σfi
. (7)

f̄ref and f̄i are the mean values of these considered frames,
σfref and σfi their variance.
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Fig. 1: Absolute endpoint error AEE of the estimated vectorfields at
the MBs positions, differentiated between the Euclidean norm and the
lateral and axial error. Compared are the optical flow on the separated
background image after SVD (green), after median filter (blue) and
the new approaches with optical flow, followed by PCA (yellow) and
ALS(red).

III. RESULTS

A. Simulation Results

Fig. 1 shows the results of applying the motion estimation
algorithms to the simulations. Compared are the motion es-
timation with optical flow on the separated background with
the SVD (green) and with the median filter (blue) (method of
choice in [8]) and the new approaches, the optical flow with
PCA (yellow) and ALS (red). The maximum euclidean norm
of the displacement error (Fig. 1(a)) is decreased from 40 µm
(SVD), accordingly 25 µm with the median filter to around
6 µm with the new optical flow approaches that eliminate
the MBs during motion estimation. This demonstrates the
advantage of using the unprocessed data instead of calculating
a background image and thus, influencing the speckle or still
having the influence of MBs. The evaluation of the lateral
(Fig. 1(b)) and the axial error (Fig. 1(c)) indicates that the
larger error results from the lateral direction which is due
to the higher resolution in axial direction. While the lateral
maximum error is 6 µm with the new approach, the axial one
is only 2.5 µm. In the axial direction, the error of optical flow
with PCA was slightly better than the optical flow with ALS.
The new approaches are both well applicable.

B. Preclinical Results

Fig. 2 and Fig. 3 show the preclinical results of the
subcutaneous mouse tumor. Fig. 2 illustrates the NCC between
each frame and the global reference frame. Apart from the
NCC after applying the motion correction, the NCC is also
computed from the original B-mode (black line). Periodically,
there is a strong decorrelation (NCC of 0.74 for the B-mode
data) which is due to the large displacement amplitudes during
breathing. The slight decorrelations between the breathing are

1400 1600 1800 2000
Frames

0.7

0.8

0.9

1

N
C

C
(f

re
f,f

fr
am

e)

B-mode
SVD & optical Flow
median & optical Flow
optical Flow & PCA
optical Flow & ALS

Fig. 2: Normalized cross correlation NCC between the global
reference frame and each motion compensated frame. Compared are
the unprocessed B-mode image (black) and the motion corrected
sequences with varying methods: optical flow applied to the SVD
filtered background image (blue), optical flow applied to the median
filtered background image (green) and the new approaches of optical
flow and PCA (yellow) and optical Flow and ALS (red).

resulting from the cardiac pulsation.
The motion estimation on the SVD filtered background

(green) does not lead to significant changes in the NCC. The
speckle is too strongly modified so that the tissue motion
cannot be detected. The median filter before motion estimation
improves the results. The minimum NCC is increased to
around 0.8 which means an improvement of 5%. Additionally,
the motion estimation of the frames without breathing is
improved. For each motion period, the plateau is characterized
by an NCC of 0.97. Hence, also the vectorfields between the
different sequences (breathing periods) could successfully be
computed.

The new approaches show both the same performance.
Independent from using the PCA or the ALS after optical
flow, the minimum NCC is increased to around 0.85 which
is an improvement of 5% to the optical flow applied to the
median filter and of more than 10% to the unprocessed data.
The NCC in between the breathing is similar to the NCC,
estimated after the median filter.

Fig. 3 shows the reconstructed microvasculature, dependent
on the MB counts per pixel. The count maps after the motion
estimation on the separated background images with the me-
dian filter (a) and the SVD (b) are disturbed by more artefacts
than the count maps after applying the new optical flow
approaches. The false detections are mainly resulting from the
insufficient motion estimation during breathing. As pointed out
before, the median filter leads to better results than the SVD.
However, the new approaches lead to the best reconstruction,
shown in (c) for the PCA and in (d) for the ALS. Hence,
The new approaches enable a clearer visualization of the
microvessels. By only using correlated frames that lead to
a low number of false detections, less frames have to be
excluded after applying the new approaches to the CEUS data
than applying the optical flow to the separated background.

IV. DISCUSSION AND OUTLOOK

The new optical flow approaches improve the accuracy of
MB localization in CEUS data. They strongly decrease the
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(a) optical flow applied to median filtered background image (b) optical flow applied to SVD filtered background image

(c) optical flow and PCA (d) optical flow and ALS

Fig. 3: Counts of MBs of a subcutaneous mouse tumor (A431) by using different techniques of tissue motion estimation (optical flow
applied to background separated images and the new optical flow approaches). The MBs are localized on foreground-background separated
images after motion correction, the MB tracks are estimated with the MCMCDA-Algorithm.

estimated displacement errors of tissue motion, compared to
the motion estimation after foreground-background separation.
The better motion estimation leads to more accurate MB
localizations, but also to a lower number of false detections by
applying the foreground-background separation to the motion
compensated B-mode image.
The elimination of MBs during motion estimation prevents
uncertainties resulting from modified speckle after filtering.
This is also applicable to other types of motion estimation
which shall be investigated in future work.
Especially in targets with high vascularization and strong
tissue motion, as the kidney and the liver, the MBs have
strong influence on the motion estimation and can thus lead
to uncertainties.
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