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Abstract—In ultrasound imaging, the delay-and-sum beam-
forming constitutes a solid measure of the acoustic reflectivity of
the scene. If it is applied to synthetic images following the Total
Focus Method, it can generate an image with high resolution and
contrast. The present work analyzes the data set that composes
an image point from a statistical point of view and proposes a
new beam formation technique capable of improving the contrast
and resolution of the image.

Index Terms—beamforming, Rician distribution, medical
imaging

I. INTRODUCTION

Along the last decade the increase of the computational
power has popularized the appearance of beamforming solu-
tions based on Full Matrix Capture (FMC) acquisition strategy.
The most popular beamforming technique for this set of data
is the Delay and Sum (DAS) that is integrated in the Total
Focusing Method (TFM) to generate fully focused images [1].

For a point in the Region Of Interest (ROI), the DAS-TFM
is implemented as the sum of the FMC signal samples that
accomplish the focusing law. This operation provides a robust
measure of the scene reflectivity and it is able to generate
a very high resolution image. However, the true potential of
the information contained in the FMC is underutilized by the
DAS.

In particular, it is interesting to analyze how the spatial
distribution of the received samples is organized in the coarray
and how secondary lobes are composed. With this information
it is possible to develop processing techniques oriented to
avoid its formation or at least to reduce its influence in the
image. The work presented here is addressed to solve this
question in linear array.

II. ESTIMATE OF THE REFLECTIVITY

A. Delay and Sum Beamforming

Let’s define the set FMC(~x) as the collection of samples
used to compute the reflectivity at the point ~x of the ROI
obtained with a linear array of N elements.

FMC(~x) :
{
sij(τ), τ =

∣∣~x−~xi

c

∣∣+ ∣∣∣~x−~xj

c

∣∣∣∀i, j = [1, N ]
}

(1)
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where ~xi and ~xj are emitter and receiver positions respectively.
The value used to evaluate at ~x the corresponding reflectivity
of the ultrasonic imaging by the DAS beamforming is the
summation of all the FMC(~x) set.

For convenience, we can assume that each sample at
FMC(~x) is composed by the reflectivity mij(~x) at that point
and a noise term nij(τ) that includes thermal noise and all
the acoustic information that is not related with the point ~x:

sij(τ) = mij(~x) + nij(τ) ' m(~x) + nij(τ) (2)

where m(~x) is a value representative of the reflectivity at ~x
that is in common for all the emission-reception transducer
pairs.

The DAS beamforming provides an estimate of the reflec-
titivity as:

m̂(~x) =

∣∣∣∣∣∣m(~x) +

N∑
i=1

N∑
j=1

nij(τ)

N2

∣∣∣∣∣∣ = |m(~x) + n(~x)| (3)

This value is coincident with m(~x) if n(~x) is equal to zero.
Unfortunately, this condition is difficult to accomplish when
the acoustic nature of n(~x) is representative in ~x. Therefore,
to improve the estimate, our objective is to minimize the term
n(~x). However, the acoustic noise is determined by the ROI,
that is invariant between acquisitions. So, there is a lack of
diversity that makes difficult to apply conventional strategies.
The solution addressed in this paper is to induce the diversity
by applying changes in the acquisition system. As far as we
are concerned, this scenario can be generated via virtual sparse
arrays.

Sparse arrays are configured by the random selection of
active elements in the aperture [2]. In this sense, each sparse
configuration is able to provide its own estimate of the
reflectivity of the ROI. This estimate is almost coincident at
the position but differs in the region where secondary lobes
are located. In Figure 1, it can be seen two examples for an
array of 16 elements, where each green squares are active
elements and blue squares are no-active. Each aperture has
its own sidelobes distribution. Based on this fact, we are able
to develop a sample space if the signals of the FMC(~x) are
conveniently combined in virtual sparse configurations.
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Fig. 1. Two examples of sparse array. Image of a reflector produced by the
active green elements

B. Generation of the sample space in the coarray

The coarray [3] is a mathematical tool that is obtained by the
spatial convolution of emission, E[n], and reception aperture,
R[n].

C[n] = E[n] ∗R[n] (4)

We redefine FMC(~x) in the coarray domain by grouping
the signals according to their spatial frequency as n = i + j.
Then,

FMC(~x)[n] :
{
c[n] =

2N−1∑
n=1

sij(τ), i+ j = n

}
∀ sij(τ) ∈ FMC(~x) (5)

The concept of sparse arrays can also be applied to the
coarray. Sparse arrays approach can be applied in the coarray
domain, selecting random active spatial frequencies. Each
sparse configuration is also able to provide an alternative map
of the reflectivities of the ROI. In Figure 2, two examples of
sparse coarrays are represented by a triangular shape. As in
the case of Figure 1, secondary lobes show different spatial
distribution.

We define C as a random set of Nc elements of the [1, 2N−
1] spatial frequencies that compose the coarray. Consequently,
the reflectivity estimate is determined by:

m̂c(~x) =

∣∣∣∣2N−1∑
n=1

c[n]
Np

∣∣∣∣ , n ∈ C (6)

=

∣∣∣∣∣m(~x) +
N∑
i=1

N∑
j=1

nij(τ)
Np

∣∣∣∣∣ , i+ j ∈ C (7)

Fig. 2. Two examples of sparse coarray. Image of a reflector produced by
the active green elements

Fig. 3. Distribution of the values of samples FMC(~x)[n] (I blue, Q red) in
the coarray distribution in a position ~x corresponding to the 1st secondary
lobe.

where Np is the number of signals involved in this particular
C set.

In order to determine the degree of sparsity suitable for this
scenario, the shape of the first sidelobe coarray projection is
considered. In Figure 3 phase and quadrature signal samples
are represented along the coarray. In this particular case an
oscillation of 1.5λ is produced in the coarray. Therefore, to
reduce the sidelobe level we have chosen:

Nc =
2

3
(2N − 1) (8)

Then, if a large enough number of C cases is considered
an histogram of estimates can be constructed. In Figure 4 this
histogram, composed by Nr = 100000 cases, is presented for
the first sidelobe position. The DAS estimate is also indicated
with a black line. The histogram presented follows a Rician
distribution. Due to the nature of the scenario, this is analogue
to a multipath problem [4]. Furthermore, Rician distribution is
frequently used to study textures in ultrasonic medical images
[5]–[7]. The DAS estimate is precisely another value contained
in the distribution support.
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Fig. 4. Distribution of estimates of the reflectivity in the first lobe position.
The DAS estimate is presented with a black line.

C. Rician beamforming

Due to the shape of the histogram follows the Rician
distribution, the set of all possible estimates can be modelled
by the equation:

f(y|ν, σ) = y

σ2
exp

(
−(y2 + ν2)

2σ2

)
I0

(yν
σ2

)
(9)

where ν and σ are the characteristic parameters of the dis-
tribution [8]. Although all image points follow the Rician
distribution, we can identify that there are three representative
cases. The first one corresponds with a position of a reflector.
In this case, the distribution converges to a Normal distribution
with low variance and high mean (see Figure 5 top). The
second case corresponds to a position where thermal noise
is significant. In this case, the distribution converges to a
Rayleigh distribution (see Figure 5 bottom). The third case
corresponds with a position where acoustic noise is significant.
In this case, the left slope is slower than the right one and its
shape tends to the Rician distribution (see Figure 4).

Now, our estimate of reflectivity, m̂p(~x) is obtained directly
from the Rician distribution using a percentile. For the case of
the medical image, where to evaluate the image the texture is
important, we use the corresponding Cumulative Distribution
Function (CDF) F (y). From this function we obtain the
probability of our initial estimate F (m̂(~x)). Then, we reduce
this probability by means of

m̂p(~x) = F−1(pF (m̂(~x))) (10)

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
beamformer, a 64 element arrays (2.5 MHz, VermonTM) has
been used to acquire the FMC of a phantom CIRSTM

(model 040GSE). Therefore, for each point of the ROI, the
m̂(~x) of full array and a the m̂c(~x) values corresponding to
a set Nr = 100000 sparse coarrays has been computed. Each
image point is characterized by the DAS and by the ν and
σ values corresponding to the fitted Rician distribution. The

Fig. 5. Top: distribution of m̂c(~x) where a reflector is dominant. Bottom:
distribution of m̂c(~x) where thermal noise is dominant. The red point
represents the m̂(~x) value and the red line the Rician distribution evaluated
from the histogram

percentile which corresponds with this DAS value is obtained
and modified by the factor (p = 0.1). The estimation is
computed by the CDF, of this percentile, which is used as
the new reflectivity value.

In Figure 6 the corresponding DAS image is presented. In
Figure 7 we can see the improvement achieved by the Rician
Beamforming. It can be seen how the contrast in the image
has been increased.

In order to evaluate the real improvement, Figure 8 presents
the linear value of m̂(~x)−m̂0.1(~x). The image shows how the
proposed method reduces secondary lobes. In particular the
value of Nc helps to reduce the influence of the first secondary
lobes.

IV. CONCLUSIONS

The results show that the Rician beamformer is able to in-
crease the contrast in the image. The experimental results show
the validity of the proposed method in real measurements.

Future works will be addressed to improve the analysis of
the distribution in order to unmask the reflector in regions
where noise is significant. In this sense, it is specially inter-
esting where the acoustic noise is more relevant.
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Fig. 6. Delay and Sum Beamforming.

Fig. 7. Rician Beamforming m̂0.1(~x).

Fig. 8. Linear value of m̂(~x)− m̂0.1(~x)
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