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Abstract—Wineglass modes are the modes of choice in bulk
acoustic wave (BAW) micro-ring gyroscopes owing to their high
angular gain and high quality factor in vacuum. The quality
factors of most mechanical modes, including the wineglass modes,
are significantly lower in liquid medium ambience. While acoustic
damping in fluids adversely impacts quality factor in modes
with longitudinal motion, certain in-plane flexural modes in
such resonators retain higher quality factors in liquid media.
In this paper, we study the angular gain of a family of such
in-plane flexural modes, termed as lobe-like modes. We present
a simulation framework to validate the high quality factors of
these modes in liquid medium ambience. We study the angular
gain for these modes, and present a design insight to optimize
the geometry of the micro-rings to maximize the angular gain.

Index Terms—BAW gyroscope, offset drift, liquid medium
operation, lobe-like mode, wineglass mode

I. INTRODUCTION

In addition to finding widespread acceptance in industrial,
automotive and consumer applications, MEMS inertial sensors
continue to push the state-of-the-art in vibratory gyroscopes
[1]. Two important specifications for tactical and navigation
grade MEMS gyroscopes are the bias instability and rate ramp,
which are significantly influenced by resonator self-heating,
and other environmental sources of offset drift. Conventionally
MEMS gyroscopes require vacuum packaging to ensure high
quality factors and thereby low noise, which leaves no method
to address the resonator self-heating. A possible solution is to
immerse the resonator in a liquid environment. However, vis-
cous energy losses tend to greatly reduce the quality factor of
resonance in these environments [2], [3]. Recent work by Ali
et al. [4] suggests that certain in-plane flexural shear modes,
termed as button-like (BL) modes, in micro-disk resonators
fabricated in a piezo-on-silicon platform retain a higher quality
factor in liquid media as compared to the conventionally used
wineglass (WG) modes. The authors primarily focused on
timing applications, and did not study the angular gain for
such modes. In this work, we have studied the angular gain of
the BL modes, and another family of in-plane flexural modes
that we call lobe-like (LL) modes. Figure 1 illustrates the
various mode shapes studied in this paper. We present a finite
element method (FEM) simulation framework to validate the
high quality factors in such modes as compared to WG modes
in a fluid environment, and extract the angular gain from
eigenmode simulations. The layout of this paper is as follows:
the next section describes the design intuition underlying the
angular gain study conducted in this work. Section III sup-

978-1-7281-4595-2/19/$31.00 ©2019 IEEE

Wineglass Button-like

Lobe-like

Fig. 1. This work simulates and compares the liquid medium quality factors
and angular gains of the wineglass (WG), button-like (BL) and lobe-like (LL)
modes. In the case of the LL modes, the angular gain is also studied for annular
ring geometries, to identify the optimal geometry for maximum angular gain.

ports the design intuition through a mathematical construction
for analyzing the hypothesis, describing the methodology to
calculate angular gain through an eigenmode FEM simulation.
Section IV describes the solid geometry chosen in this work
and the different simulation studies conducted. Section V
describes the results of the quality factor simulations in fluid
media for the WG, BL and LL modes, and provides additional
insights for modifying the geometry to optimize the angular
gain for the LL mode family.

II. DESIGN INTUITION

This work is inspired by previous work by Ali et al. [4],
where high quality factors for in-plane flexural BL modes
in micro-disk resonators immersed in liquid media were in-
vestigated. This study prompted us to explore other flexural
shear modes that possess high angular gain in addition to
retaining higher quality factor than WG modes in liquid media.
For a vibrating body rotating about a stationary axis, the
angular gain (A,) is the the ratio of the angle rotated by the
vibration pattern to the angle rotated by the body about the
axis in a certain time. The angular gain is also referred to
as Bryan’s Factor, named after G. H. Bryan who discovered
this phenomenon in 1890 [5]. While this interpretation is
useful to understand the dynamics of the disk, another intuitive
interpretation of the angular gain is a measure of the coriolis
mass, or the degree of ‘perpendicularity’ of the displacement
in the corresponding mode shapes of the orthogonal modes
chosen for gyroscopy [6]. Tuning fork gyroscopes, with the
orthogonal gyroscopy modes aligned along perpendicular axes,
have the maximum possible angular gain = 1. The angular
gain is also inversely proportional to the effective mass of the
resonance mode [6]. Therefore, to improve the angular gain
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Fig. 2. (a) Isometric view of the simulated geometry. (b) Single layer
distributed swept mesh of solid domain (disk). The mesh element size is
chosen to be comparable to the viscous penetration depth of the respective
medium. (c) Lateral cross-section of the solid piezo-on-Si disk.

of a mode, we must find ways to either increase coriolis mass
or to reduce its effective mass, or both.

This intuition led us to investigate LL. modes that are
flexural shear modes (see Figure 1). The low displacement
region around the center allows us to introduce a central hole
to convert the geometry into an annular ring without altering
the high displacement areas of the mode shape. The hole
radius is an additional design parameter. Introducing the hole
allows us to tune the coriolis and effective masses, thereby
modifying the angular gain. This study focuses on identifying
a methodology to appropriately tune and maximize the angular
gain of the LL modes.

III. ANGULAR GAIN

In this section, the mathematical framework to calculate an-
gular gain is presented [6], [7]. For a given eigenmode, the dis-
placement (u) along the * direction is denoted as u;(z, y, 2),
and can be expressed as a superposition of generalized dis-
placements due to the two orthogonal modes (g;,j = 1,2).
The proportionality constants in the superposition sum are
called shape functions (alternatively, the modeshapes), denoted

as ¢Zj(xay7z) € [01 1]

wilw,y,2) = Y dij(w,y,2)g; (D

7j=1,2

The shape function ¢;;(z,y, z) denotes the displacement (nor-
malized to maximum displacement at corresponding antinode)
due to the j** mode along the " direction at a coordinate
(x,y,2).

The velocity of a body rotating in inertial frame (with
angular rate ) can be written as:

Vinertial = ﬂ(ﬂ?, Y, Z) + ﬂ(.]j, Y, Z) x Q (2)

The displacement is specified as a vector u(z,y, z), com-
prising of components u; along each direction in the coordi-
nate system (this paper deals with planar modes, so only X
and Y axes are considered). The velocity U;pertiqr 18 used to
compute the kinetic energy, that in turn has three terms: two
due to contributions from the individual modes themselves,
and the third due to the coriolis coupling between the two
modes. Expressing each kinetic energy term in the form of
%MVQ, we thus get three masses: two effective masses (Meg)
for the individual modes and a coriolis mass (y):

Mg = / p (92, + by + %) AV 3)
Y= /P (¢m1¢y2 - ¢y1¢12) av 4)

The intuitive description for Mg and v is presented in
the previous section. The two modes have the same effective
mass, as we have assumed degeneracy. The angular gain is
then derived as [6], [7]:

__7
g nMeff

(&)

Here n is the mode order, which in case of a disk resonator,
determines the number of angular nodes and the roots of the
radial and circumferential displacements [8].

IV. GEOMETRY & SIMULATION SETUP

For the finite element method (FEM) simulation in COM-
SOL Multiphysics software, we use the same Piezoelectric-
On-Insulator geometry described in [4] sans the anchors and
support structure. The geometry is a microdisk with a 400 um
radius, comprising of a 0.5 um thick layer of aluminium nitride
(AIN) atop a 10um thick layer of silicon (Si). The cross-
section of the disk is shown in Figure 2(c). For the FEM
simulation, we need to discretize the continuous geometry
using a mesh. Therefore, the integrals in equations 3 and
4 are re-written as summations over all mesh elements. The
displacement contributions due to all eigenmodes at each node
in the mesh are obtained by performing an eigenfrequency
analysis on the respective geometry. The eigenmodes of this
structure are computed in two environments:

Fluid medium (Air/Water): Our objective is to validate that
the LL and BL modes retain higher quality factor in water
as compared to the WG modes. A fluid (air/water) domain is
setup around the solid disk to compute the quality factor of
the WG, LL and BL modes, as shown in Figure 2.

Loss-less: We wish to achieve as high an A, as possible to
improve the sensitivity of the LL mode gyroscope. Equation 5
suggests that A, increases when the coriolis mass increases.
Trimming the non-moving regions of the resonator by in-
troducing an annular hole in the center of the disk, should
result in increase in the coriolis mass, with minimal changes
in the effective mass, thereby increasing the angular gain. This
hypothesis is investigated through eigenmode simulations that
do not consider any losses.
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A. Simulation of quality factor in liquid medium

Figure 2(a) illustrates the simulation framework set up in
COMSOL Multiphysics. A spherical fluid domain is set up
around the bi-layered disk. Thermoviscous effects are mod-
elled in this domain using the Thermoviscous Acoustics node
in COMSOL. The bulk vibrations of the disk induce pressure
acoustic waves in the fluid. Hence an encapsulating pressure
acoustics domain is created using the Pressure Acoustics
node. Discretization of the solid domain is performed using
a quadrilateral swept mesh with a single element distribution
through each layer as shown in Fig. 2(b). Since we are only
interested in in-plane flexural modes, higher mesh resolution
along the thickness is unnecessary. The mesh element size is
chosen to be comparable to the viscous penetration depth in
the respective fluid (0.22 mm and 0.057 mm at 100 Hz, 1 atm
pressure and 20°C for air and water respectively). At other
frequencies (f), the penetration depth is expressed as:

100
dvise(f) = dql)ggc e (©6)
f
where d.9% is the viscous penetration depth or boundary-

layer thickness at 100 Hz [9]. Within the solid disk geometry,
thermoelastic damping physics is included in the material
through a multiphysics coupling between the Heat Transfer
and Solid Mechanics modules in COMSOL.

A spherical fluid domain of radius 0.5 mm is setup around
the bi-layered disk to account for the thermoviscous interac-
tion between the solid and the fluid domain. This radius is
sufficient considering the penetration depths of air and water
at frequencies of our interest. A pressure acoustics domain of
thickness 0.3 mm is setup around the thermoviscous domain.
This domain is assigned a spherical radiation boundary con-
dition so that any outgoing acoustic waves pass through with
minimal reflections. These two domains are meshed using a
free tetrahedral mesh as shown in Figure 2(a). To speed up
the computation, 2-fold symmetry of the targeted elliptical
modes are exploited and only half the geometry is simulated.
Eigenfrequency analysis is performed to calculate the quality
factor for the WG, BL and LL modes, based on the complex
eigenfrequencies obtained as result of simulation of acoustic
losses in the fluid.

B. Simulation of angular gain

The angular gain simulation requires obtaining the spatial
displacement profiles for the set of orthogonal eigenmodes,
and can be obtained from the same eigenfrequency simulation
described above. Since the damping effects need not be con-
sidered for calculation of angular gain, the surrounding fluid
environment is not incorporated. For modes with mode order
n = 2,3,4,5, a hole with radius R;,, is introduced as shown
in Figure 3. The annular radius R;, is varied from Opm to
120 um in steps of 10 pm, while maintaining R, at 400 pm.
The eigenmodes are computed using the Solid Mechanics
module and displacement data for all mesh nodes for the
orthogonal eigenmodes are exported to a comma separated
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Fig. 3. Surface displacement profiles of multiple orders (n) of LL modes
(green lowest, red highest). In this work, we studied the impact of introducing
a hole of radius R;, on the angular gain of these modes.

value (csv) file, which is then processed in MATLAB to obtain
the angular gain using equations 3, 4 and 5.

V. RESULTS

The simulation results for thermoelastic and viscous damp-
ing limited quality factors for the n = 2 mode of all three
families are provided in Table 1. As expected, the viscous
damping limited quality factor in water for the BL and LL
modes (shear-modes) are higher than that of the WG mode
(bulk longitudinal-mode). The quality factor for the BL mode
obtained through simulation is in the same order of magnitude
as experimental results reported by Ali et al. [4]. The BL and
LL modes are observed to have quality factors in same order
of magnitude in the simulation results. The high quality factor
in fluid media paves the way for a discussion about the angular
gain of these modes for potential use in gyroscopy.

TABLE I
SIMULATION RESULTS IN AIR AND WATER MEDIUM
Parameter Medium WG mode BL mode LL mode
Frequency | Air 5.05 16.33 18.78
(MHz) Water 4.54 14.77 16.96
Quality Air 4.3 x10% | 1.25x10° | 1.94 x 10°
factor* Water 88.17 191.79 233.36

*The quality factor simulation only accounts for losses due to
thermoelastic and viscous damping.

Figure 4(a) shows the variation in angular gain with R;,, for
n = 2,3,4,5 ordered modes of LL. mode family. The curves
for n = 2 and n = 3 modes show a peak at a certain radius
value and then decrease for increasing R;,,. For higher order
modes, this peaking behavior is not observed. The peak A,
for n = 3 mode is observed at higher R;, as compared to
n = 2 mode (70pm v/s 40 ym).

Figure 4(b) and (c) show the plot of coriolis and effective
masses versus R;, for the n = 2 and n = 3 modes
respectively. As described in section IV, the effective mass for
the n = 2 mode does not show large variation for R;, > 0,
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Fig. 4. (a) Variation of angular gain of various orders of LL modes, with increasing inner radius (R;,) of the annulus. (b) Variation in coriolis and effective
masses of the n = 2 LL mode with increasing inner radius (R;y,) of the annulus. (c) Variation in coriolis and effective masses of the n = 3 LL mode with

increasing inner radius (R;y,) of the annulus.

1.00

n=.

f— ) =3

0.75

0.50

0.25

Normalized Displacement (a.u.)

0.00 e : Max ?ngular gaip points
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Distance (a.u)

Fig. 5. Displacement profile along a radial segment passing through antinode
(see insets) for n = 2 and n = 3 LL modes, plotted versus the radial distance
normalized to Ry¢. Introducing an annular hole leads to increasing coriolis
mass, as well as distortion of the mode-shape, thereby resulting in reducing
angular gain beyond a critical value of R;,. The critical value of R;, is
higher for the n = 3 mode since the antinode is located at a larger radial
distance from the center of the disk, as compared to the n = 2 mode.

while the correlation between the the variation of coriolis
mass and angular gain with R;,, is clearly noticed. While the
effective mass for n = 3 mode does show a peaking trend for
increasing R;,,, the coriolis mass peak occurs at a larger value
of R;, than the effective mass peak and thus the peaking trend
is also observed in angular gain (panel (a)). Higher modes do
not show this trend because increasing R;, alters the mode
shape and negates the benefit of introducing an annular hole.

The relative difference in optimal R;,, values for maximum
angular gain for n = 2 and n = 3 LL modes can be explained
using Figure 5. The radial displacement for a disk geometry
(Rin = 0) is plotted along a segment passing through one of
the high displacement lobes for these modes, as shown in the
insets. The antinode for the n = 3 mode is located at a large
radial spacing as compared to the n = 2 mode, and thus the
n = 3 mode benefits from introducing a larger annular hole
for maximum angular gain as compared to the 7 = 2 mode.

VI. CONCLUSION

The study presented in this paper explores the suitability
of the LL modes for designing BAW gyroscopes with the
resonator immersed in a liquid medium for potentially manag-
ing offset drifts due to resonator self heating. The LL modes
exhibit in-plane shear deformations, and are validated with
FEM simulations to exhibit higher quality factors in liquid
medium as compared to the conventionally employed WG
modes. We also present a systematic study of the optimization
of angular gain in such LL modes by introducing an annular
hole. Our insights suggest that micro-ring geometries are better
suited for LL. mode gyroscopes as compared to micro-disks,
and we present a methodology for optimization of the annular
ring radius to maximize angular gain.
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