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Abstract—Coherent compounding may be applied with diverg-
ing waves on 2D ultrasound probes to overcome the problem of
small aperture probe and meet the requirement for high frame
rate 3D imaging, as in transthoracic echography for example.
Deterministic distributions of the virtual sources are often used
in practice. The compromise between contrast and resolution has
to be managed according to the application, and this will affect
the distribution of the virtual sources. This study proposes to use
a multi-objective optimization genetic algorithm to allow some
freedom in the management of this compromise. The solutions
obtained are compared to the case of a regular and a spiral
distribution of sources. The results show that virtual sources
distribution can produce images with the emphasis on either
contrast or lateral resolution, and validate observations already
reported in the literature.

Index Terms—3D echography, 2D probe, coherent compound-
ing, diverging waves, multi-objective optimization genetic algo-
rithm

I. INTRODUCTION

Three-dimensional (3D) ultrafast echography with two-
dimensional (2D) probes allows tracking the dynamics of
organs, like the heart [1,2], and allows obtaining further
information, which helps the clinician doing a better medical
diagnosis. However, 3D ultrafast echography remains a
challenging application because of the complexity to maintain
a high frame rate while guaranteeing a sufficient image quality
for post-processing algorithms. Coherent Compounding (CC)
[2,3] overcomes that difficulty, such that it is currently a
popular transmitting strategy in ultrafast echography. The
principle is to transmit several unfocused waves to reconstruct
a high quality image. The unfocused waves can be either
plane or diverging. When generating Diverging Waves (DW),
each wave is associated with the position of a Virtual Source
(VS).

Up to now, regular distribution of the VS is often used
in practice; however, the resulting image can be enhanced in
terms of resolution or contrast by optimizing the VS positions.

This study consists in finding optimized distribution of the
VS as a function of the desired quality metric: lateral reso-
lution or contrast. A multi-objective optimization framework
has thus been developed in order to put the emphasis on either

contrast or lateral resolution for images of 3D Point Spread
Function (PSF).

II. METHOD

A. Imaging configuration

A 32 × 32 elements probe is simulated using the Field II
software [4,5] in MATLAB [6]. The pitch is fixed at λ

2 where
λ =

cp

fc
is the wavelength, cp = 1540 m/s is the compressional

wave velocity, and fc = 3 MHz is the central frequency
of the elements. A single point-like scatterer is located at
(x,y,z) = (0,0,40) mm, where x and y are the two lateral
dimensions and z the depth, in order to obtain a 3D PSF
for further processing. The center of the probe is assimilated
to the origin of the coordinate system. The 3D grid of the
reconstructed images is (x,y,z) = 20 × 20 × 10 mm with a
step of λ

2 in each , resulting in 78× 78× 39 pixels.

For cardiac imaging, DW are commonly used because a
large Region Of Interest (ROI) is required (∼ 8 cm in the
lateral direction) and the aperture of the probe has to be small
enough (∼ 1 cm) to fit the intercostal space. The VS are
located behind the probe. Theses DW are associated with the
position of a VS, a point-like acoustic source placed behind
the probe plane when the ROI is in front of it.

A standard Delay-and-Sum beamforming is then used to
reconstruct the images for each DW. No apodization is applied
in transmission and reception. Twenty-five DW are transmitted
to reconstruct an image with the CC method, i.e. by adding
coherently all the images in order to obtain the final image,
so that resolution, contrast and Signal-to-Noise Ratio (SNR)
can be improved. This method allows choosing a compromise
between image quality and frame rate, or fixing the frame rate
under the constraint that the frame rate has to match tracking
algorithms. The quality is comparable to a synthetic aperture
imaging and conventional echography when a large number
of VS (> 25) is used. However, the resulting image quality is
strongly dependent on the position and number of VS, such
that these parameters have to be optimized.
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B. Cost functions
Two cost functions are extracted from the PSF to quantify

the quality of the reconstructed images and derive an optimiza-
tion framework: one for the lateral resolution and a another
one for the contrast. The inputs of these cost functions are the
2D spherical coordinates (θ, φ). The distance between the VS
and the center of the probe (Fig. 1) is constant for all VS in
order to reduce the number of input arguments. This distance
is then fixed at 40 mm, as used in preceding work [7].
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Fig. 1: Position of the probe, the ROI and the virtual sources

The maximum elevation angle θ which can be reached
out is fixed at 20◦, in order to reduce computation time and
increase convergence rate, and because a high θ produces
more artefacts on the images due to secondary lobes.

For the resolution cost function, all pixels above -6 dB are
projected along the z-axis in order to focus on the lateral
spread in 2D (Fig. 2); the area of that projection is measured
and then the average diameter is calculated.
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Fig. 2: Lateral resolution (FWHM) measurement by projection

By doing so, this 1-D measurement corresponds to the
standard Full Width at Half Maximum (FWHM) measurement.

For the contrast, the Maximum Side-lobe Level (MSL) is
measured using an online toolbox [8] in order to minimize the
side-lobe level, which is related to contrast. Fig. 3 the standard
1D MSL measurement :
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Fig. 3: Standard 1D Main-to-Side-lobe Level (MSL) measure-
ment

C. Multi-objective Optimization

As there is a compromise to achieve between contrast
and resolution [9] that will depend on the application, a
non-dominated front approach [10], that is, a set of solutions
that best represents the Pareto front [11,12], has been chosen
to perform a multi-objective optimization. In that way, a
single run of optimization generates a set of trade-offs
between contrast and resolution. Evolutionary Algorithms
(EA), such as Genetic Algorithm (GA) [13,14] and Particle
Swarm Optimization (PSO) [15], are suitable to handle multi-
objective optimization. Different tools for Multi-objective
Optimization Evolutionary Algorithms (MOEA) have been
proposed [10]–[12]. The gamultiobj toolbox available in
MATLAB [6], based on fast Non-dominated Sorting Genetic
Algorithm (NSGA-II) [16], has been used to perform the
optimizations. The population here is set to 1000 individuals
(solutions), with a 40 % cross-over fraction and a 4 individuals
tournament selection.

III. RESULTS

The results are presented over the objective space, which is
the space representing all the costs (MSL and FWHM) for each
solution. It helps evaluating this optimization performance (po-
sition and spread of the non-dominated front), and interpreting
results like the choice of the proper compromise to be made.
The optimization ends after 250 generations, and all the non-
dominated solution have been saved (25) to produce a non-
dominated front. Two additional deterministic configurations
are added as a comparison: a regular (a) and a spiral (b)
distribution represented in Fig. 4, originating from [7,17].

Fig. 5 presents the performance in the objective space of
the stated solutions, in terms of MSL and FWHM.
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a. regular
grid

b. spiral
grid

c. optimized for
MSL

d. optimized for
FWHM

e. optimized for
both (mid-range)
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MSL -24.9 dB -26.3 dB -32.2 dB -21.4 dB -29.3 dB
FWHM 1.92 mm 2.28 mm 2.11 mm 1.25 mm 1.65 mm

Fig. 4: VS distribution and PSF for 5 configurations: regular (a.), spiral (b.), optimized for MSL (c.), optimized for FWHM
(d.), and optimized for both MSL and FWHM (mid-range, e.)
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Fig. 5: Solutions in the objective space (MSL and FWHM):
non-dominated front obtained after the multi-optimization of
the VS, regular and spiral distributions

The non-dominated front shows solutions between 1.25 and
2.11 mm for the FWHM measurement and from -21.4 to -
32.2 dB for the MSL measurement. The non-dominated front
helps revealing that both regular grid and spiral distribution
used classically are not optimal solutions, with respect to these
quality assessments.

Three specific solutions are extracted from the non-
dominated front: the best in FWHM, the best in MSL and
a mid-range trade-off. Their VS distributions are displayed in

Fig. 4 with the resulting xy images computed at scatterer’s
depth.

The regular distribution (a) shows better FWHM than the
spiral (b) (from 2.28 mm to 1.92 mm) whereas the MSL is
better on the spiral (-26.3 dB) than the regular distribution (-
24.9 dB). Optimizing the FWHM helps enhancing the lateral
resolution (c) on the displayed PSF and likewise the MSL for
the contrast between the main lobe and the residual image (d).
At last, the mid-range trade-off outperforms both regular and
spiral distributions in both FWHM and MSL measurement.

By looking at the VS distribution for the optimized solu-
tions, the VS are distributed close to the maximum elevation
angle, approaching the maximum possible aperture, for a
better lateral resolution while they gather closer to the center,
reducing the inter-VS space for a lower secondary lobe effect,
as mentioned in [9]. The mid-range optimized distribution
appears as a mixture of positions optimized for either the MSL
and the FWHM.

IV. CONCLUSION

This study shows that image quality can be improved by
using optimized distribution of virtual sources instead of
regular distribution, which is often used in practice when
applying coherent compounding with diverging waves. A drop
of 4.4 dB for main-to-side-lobe level and 0.27 mm for lateral
resolution is achieved on a 3D point spread function for a
distribution optimized for the two quality metrics (full width
at half maximum and main-to-side-lobe level), in comparison
with a regular distribution. The optimized distribution can be
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adapted according to the application, and the optimization
framework can take into account other imaging algorithms,
such as a correlation-based algorithm [18]. However, as this
optimization is conducted within the framework of a single
scatterer, the emphasis is put on the scatterer’s location,
notwithstanding the other directions, so that the image quality
will be non-homogeneous. This optimization framework is
currently being extended to more complex medium, like many
scatterers located at different depth, lateral and elevation
positions, or a more sophisticated medium as a cyst phantom,
in order to be more realistic.
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