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Abstract—For the reconstruction of the microvasculature from
contrast-enhanced ultrasound sequences with ultrasound local-
ization microscopy, it is neccessary that a vessel is flown through
by at least one microbubble (MB). Therefore, the reconstruction
degree can be increased by either long acquisition times or by
using high MB concentrations. However, in clinical applications
the measurement times are usually limited. Thus, an adequate
method for the detection of the MB is essential that ensures an ac-
curate localization of single MB even in case of overlaying point-
spread functions (PSFs) when using high MB concentrations.
Therefore, we investigated the performance of sparsity based
ultrasound hemodynamic super-resolution (SUSHI), and also
expanded it to depth dependent PSFs. We applied the method to
varying MB concentrations, analyzed different implementations
of SUSHI and compared it to standard detection methods
(Gauss detection and the centroid detection). The sparsity driven
super-resolution with depth dependent PSFs showed the highest
sensitivity for high MB concentrations. The Gauss detection
yielded the lowest error rates. The centroid detection failed with
increasing MB concentration.

Index Terms—Localization, microbubble detection, point-
spread function, sparsity driven super-resolution, ultrasound
localization microscopy

I. INTRODUCTION

Ultrasound localization microscopy ()ULM) relies on the
subwavelength localization of individual MB to reconstruct
the microvasculature. Recently, we have shown that also in
clinical measurements detailed information on the morphology
and perfusion of vessels can be obtained [1][2]. However,
a high enough number of microbubbles (MBs) has to be
detected to get a good mapping of the vasculature [3]. In
clinical applications, higher MB concentrations are preferred
to long acquisitions times. Since high MB concentrations lead
to overlapping PSFs, the accurate localization of individual
MB is limited, and an adequate detection method is essential.
Recently, van Sloun et al. presented the implementation of
the sparsity based ultrasound super-resolution hemodynamic
imaging (SUSHI) to CEUS frames to detect individual MBs,
even in case of small distances [4]. We implemented this
algorithm and additionally used depth dependent PSFs instead
of an ideal Gauss kernel. The algorithm was applied to B-
mode data as well as to RF data. The detection sensitivity and
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the localization accuracy was evaluated depending on the MB
concentration, or rather on the expected minimal distance of
MBs. The results were also compared to the standard detection
methods (convolution with a Gaussian kernel followed by a
local maxima detection and centroid detection).

II. MATERIAL AND METHODS

A. Sparsity Driven Super-Resolution

Sparsity driven super resolution is a method used in the
fluorescence photo-activated localization microscopy (fPALM)
to get high resolved images of the vasculature [5]. In [6],
the method was applied to CEUS data for the first time,
called sparsity-based ultrasound super-resolution hemody-
namic imaging (SUSHI), and van Sloun et al. presented a
frame-to-frame implementation of SUSHI to detect single
MBs in CEUS data [4]. The method is based on the knowledge
about the PSF of a single MB in CEUS data. Additionally, a
sparse image of MBs is assumed. This leads to the minimiza-
tion problem

||fin −Afout||22 + λ||fout||0 fout ≥ 0, (1)

where fin is the vectorized input image and fout the vectorized
output image. The output image is a sparse, super-resolved
MB image which ideally is a binary matrix. The matrix A is
built with vectorized PSFs for each image pixel. The product
of A and the sparse image fout corresponds to a convolution.
Because the output is required to be sparse, the L0-norm is
used for regularization. The parameter λ is a weighting factor
for the regularization. Since the L0-norm is not solvable, the
L1-norm is used instead

||fin −Afout||22 + λ||fout||1 fout ≥ 0. (2)

This minimization problem is solved using the fast iterative
shrinkage thresholding algorithm (FISTA) [7], modified to
only compute positive values for fout.

In [4], the fit of a rotated anisotropic 2D Gauss kernel was
used as PSF to compute the matrix A. We instead simulated
depth dependent PSFs with Field II [8] in Matlab to improve
the localization. The simulations were computed with the
settings described in section II-D.

For computational efficiency, the CEUS images were sub-
divided into blocks which were evaluated separately. The
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interpolated grid for MB detection had a resolution of 10µm
in axial and lateral direction.

B. Centroid Detection

For the centroid detection, a thresholding is carried out first,
and single bright points considered to be noise, are deleted.
Afterwards, it is searched for regions of higher intensity which
are assumed to belong to MBs. The centroids of these regions
are defined to be the MB positions [10], [11].

C. Gauss Detection

For the Gauss detection, the MB image is convolved with a
Gaussian-kernel matching the size of the ultrasound systems’
PSF. Afterwards, a thresholding is carried out and the image
is interpolated to finally detect the local maxima on a super-
resolved grid [12].

D. Simulations

To evaluate the performance of the algorithm regarding the
minimum distances between the MB, Field II [8] simulations
were carried out. The MBs were assumed to be point scatterers
and uniformly distributed in lateral and axial direction in a
phantom. The phantom width was set to7mm and the height
to 15mm. The settings were chosen according to a clinical ap-
plication [2] and resemble typical settings of the 10MHz PLT
1005BT linear transducer of the Aplio 500 (Canon Medical
Systems, Otawara, Japan). In the simulations, two foci in axial
direction were realized, whose regions were combined to get
the complete image. The point-spread-function is characterized
by a full width half maximum of 560 µm axially and 780 µm
laterally [1].

For the localization of individual MBs, a distance of less
than the half width half maximum (HWHM) between two
MBs is assumed to be critical for separation. Therefore,
these distances are of interest for the analysis of the MB
detection in case of high MB concentrations. The minimal
expected distance d between MBs was evaluated assuming that
the probability of detecting MBs is Poisson distributed. The
probability distribution function FX(x(k > 0)) describes the
probability to detect k MBs within a radius x, and is based
on the Poisson distributed probability of detecting no MBs
(P (X(k = 0))):

FX(x(k > 0)) = 1− P (X(k = 0)) = 1− e−Cπx
2

. (3)

Hence, the probability density function fX(x(k > 0)) results
in

fX(x(k > 0)) = 2Cπxe−Cπx
2

. (4)

The minimum expected distance d is defined as the expected
value of X:

d = E(X) =

∫ ∞
0

x · fX(x) dx =
1

2 ·
√
C
. (5)

MB concentrations from 3 to 80·105 MBm−2 were simulated
leading to the expected minimal distances of 912.9 µm to
176.8 µm. The relationship is shown in Fig. 1. The critical
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Fig. 1: Expected minimal distance of MB as a function of the
MB concentration. The distances smaller than the HWHM in lateral
(yellow) and in axial (red) direction are coloured.

regions in which d is lower the HWHM in lateral and in axial
direction are coloured in yellow and red, respectively.

In these simulations, a successful separation of the fore-
ground (MB) from the background (tissue) without artefacts
was assumed to enable the performance analysis of the MB
detection depending on the MB concentration without other
influencing factors.

E. Quality Criteria

The performance of the MB detection was evaluated by the
sensitivity Se and the error rate ER:

Se =
NTP

NGT
ER =

NFP

NFP +NTP
. (6)

NTP is the number of true positive detections, NGT the ground
truth number of detections, NFP the number of false positive
detections. An MB was assigned to a simulated MB if its
position was detected within the standard deviation of the PSF
to the ground truth position.

Furthermore, the accuracy of MB localization was evaluated
by the distance between ground truth and detected position.
The lateral and axial deviations were assessed separately, as
well as the Euclidean distance for both. The mean values and
standard deviations were calculated as a function of the MB
concentration.

III. RESULTS

A. Comparison of different SUSHI Implementations

The sensitivity and error rate for the different implementa-
tions of SUSHI are shown in Fig. 2. The sensitivity for both
SUSHI algorithms applied to B-Mode data, using one ideal
Gauss kernel as PSF (red) and the depth dependent PSFs (dark
red), is comparable. For large expected minimum distances,
the sensitivity is 1 and decreases with decreasing distance as
to be expected. For distances larger than the lateral HWHM,
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the sensitivity is always higher than 80%. For an expected
minimal distance of 176 µm, the sensitivity decreases to 45%.
Regarding the error rate, these two implementations show
slight differences. For expected minimum distances between
500 µm to 900 µm, the error rate is between 10% and 25% for
SUSHI with the ideal Gauss kernel and between 8% to 15%
using depth dependent PSFs.

The implementation with depth dependent PSFs applied to
RF data shows a similar behaviour of the sensitivity for dis-
tances larger than the lateral HWHM. With further decreasing
distances, the sensitivity remains higher than for the other two
implementations. For a distance of 176 µm, the sensitivity is
around 15% higher compared to the detection on B-mode data.
Since the error rate is in a similar range as when using the ideal
Gauss kernel on B-mode data, this is a clear improvement.
Compared to using the depth dependent PSFs on B-mode data,
the advantage of the higher sensitivity disappears because also
the error rate is approximately 10% higher.

In Fig. 3, the localization error of the MB detection is shown
separately for the lateral (a) and axial direction (b), as well
as for the Euclidean distance considering both directions (c).
For all SUSHI implementations, the positions are localized
more precise in axial than in lateral direction, but with the
same accuracy. The standard deviations of the localization
error in lateral direction increase with decreasing distance
and are between 10 µm to 100 µm. No substantial differences
for the three different implementations are observable. Re-
garding the localization error in axial direction, using depth
dependent PSFs on RF data leads to more precise results
(standard deviations between 10 µm to 25 µm) than the other
two implementations (standard deviations between 20 µm to
50 µm).

Calculating the Euclidean distance leads to a bias of 20 µm
to 100 µm, dependent on the distance. Using the implementa-
tion on RF data leads to a slightly lower bias. However, for
all implementations the accuracy and the precision gets worse
for high MB concentrations.

B. Comparison of Detection Methods

Fig. 4 illustrates the performance of the investigated detec-
tion methods: the Gauss detection (blue), centroid detection
(green) and SUSHI (dark red). Because the Gauss detection
and centroid detection are both applied to B-mode data,
these are compared to the SUSHI implementation with depth
dependent PSFs applied to B-mode data.

The sensitivity of the Gauss detection decreases from 92%
for the largest distance to 21% for the shortest distance. For
distances larger than 500 µm, the sensitivity is higher than
80%. For shorter distances, it decreases to 65% at the lateral
HWHM. For the lowest distance of 176 µm, the sensitivity
drops down to 21%. However, the Gauss detection has the
lowest error rate which is only slightly influenced by the
distance between the MBs.

The centroid detection already starts with a low sensitivity
of 74% for the largest distance, and quickly decreases to 0 for
the lowest distance.
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Fig. 2: Sensitivity and error rate of applying SUSHI to the sim-
ulations: one ideal Gauss kernel applied to B-mode data (red),
depth dependent PSFs applied to B-mode data (dark red) and depth
dependent PSFs applied to RF data (orange). Solid lines: sensitivity;
dashed lines: error rate.

As described before, the SUSHI algorithm leads to a sensi-
tivity of 1 for the largest distance and is over 80% for distances
larger than the lateral HWHM. This means an improvement of
around 20% compared to the Gauss detection. For the lowest
distance, it yields a sensitivity of 41% which is again an
improvement of 20%. However, with an error rate of 10%
to 20%, it exceeds the error rate of the Gauss detection.

IV. DISCUSSION AND OUTLOOK

The analysis has shown that the centroid detection is only
suitable for low MB concentrations because it cannot handle
overlapping PSFs. Close MBs are interpreted as one large
bolus. Hence, the MB position is detected at the centroid of
multiple MBs which does not correspond to one of the true
MB positions. Thus, the sensitivity is low, and the error rate
increases with the concentration.

In contrast, the Gauss detection performs well and is char-
acterized by a low error rate. However, the sensitivity is low
for high MB concentrations.

SUSHI is well applicable to also high MB concentrations,
independent of the implementation. However, using depth de-
pendent PSFs, especially on RF data, improves the sensitivity
compared to using one ideal Gauss kernel on B-mode data.
The fact that the sensitivity is higher, but the error rate is lower
using the depth dependent PSFs on RF data instead of on B-
mode data, signifies that this could be effected by the choice
of the weighting factor λ. In contrast, the implementations
on B-mode data for low distances indicate that using depth
dependent PSFs is an improvement to using one ideal Gauss
kernel. The sensitivity is similar for both, but the error rate is
higher for the implementation with the ideal Gauss kernel.

The parameter λ weights the regularization and can influ-
ence the detection results. A high value for λ leads to a sparse
image which means a low number of detections, thus a low
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(a) lateral error
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(b) axial error
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Fig. 3: Localization error of detected MBs (distance between ground truth and detected positions, in lateral (a) and the axial direction (b),
as well as the Euclidean norm (c), for different implementations of SUSHI: one ideal Gauss kernel applied to B-mode (red), depth dependent
PSFs applied to B-mode data (brown) and depth dependent PSFs applied to RF data (orange).
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Fig. 4: Sensitivity and error rate when applying the Gauss detection
(blue), the centroid detection (green) and SUSHI (dark red) with
depth dependent PSFs applied to B-mode data. Solid line: sensitivity;
dashed line: error rate.

error rate, but also a low sensitivity. In contrast, it is vice
versa for a low λ. It has to be adapted for RF data and B-
mode data and maybe, it should also be varied dependent on
the MB concentration. Probably, approaches based on deep
learning [9] should be preferred to get a higher computational
efficiency and to eliminate the uncertainty because of λ.

Concluding, these methods are applicable to high MB con-
centrations and the depth dependent, simulated PSFs should be
preferred to the ideal Gauss kernel. MB concentrations can be
increased to get a faster reconstruction of the microvasculature,
but also dense vascularized organs that lead to close MBs in
neighbouring vessels, can be processed. However, localizations
with distances lower than the axial HWHM of the systems PSF
should be treated with caution because the localization error
increases with decreasing distance. The same was observed
for the localization with Gauss detection, not shown here. As
further investigations, the performance tests should be carried
out on noisy MB images with artefacts of the foreground-

background separation.
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