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Abstract — In this paper, we present a compressed
sensing model for 2D Full Matrix Capture data from
a uniform linear array. Data is reconstructed via
a matrix-free implementation of the Total Focusing
Method (TFM) combined with the Fast Iterative
Shrinkage/ Thresholding Algorithm. This results in
reduced measurement times and data volumes with-
out sacrificing image quality. Our approach is com-
pared to standard TFM by applying the techniques
on real measurement data, both synthetically com-
pressed and complete.

I. INTRODUCTION AND STATE OF THE ART

Sampling phased arrays allow the acquisition of so-
called Full Matrix Capture (FMC) data, enabling the
usage of sophisticated post-processing techniques for
ultrasound nondestructive testing (UNDT) [1], [2]. One
such technique is the Total Focusing Method (TFM) [3], a
multi-channel extension to the Synthetic Aperture Focusing
Technique (SAFT) [4]. TFM is attractive due to its high
resolution; however it displays limited performance when
it comes to distinguishing closely spaced defects. This
has roused interest in modifications to TFM that allow it
to overcome this shortcoming.

Enhancements to TFM based on forward models are
a topic of widespread interest. In [5], the authors cast
TFM as a sparse signal recovery task by expressing
it as an `1 regularized inverse problem. Similarly to
the approach in [6], the inverse problem formulation is
extended in [7] by considering a pulse shape dictionary,
further increasing resolution. Anisotropic propagation
and frequency-dependent attenuation are included in the
forward model in [8] along with an alternative MAP
reconstruction approach.

TFM and its variants suffer from the costly FMC process
in spite of the achievable resolution. The data capture
process requires a separate measurement cycle for each
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transmitting element in the array. This is time consuming
and yields large data volumes. These shortcomings can be
overcome through compressed sensing directly during the
measurement procedure. In [9], the measurement time is
reduced by allowing overlap of different randomly delayed
transmit events in the received signals. In this paper, we
present a compressed sensing formulation for TFM as an
inverse problem to reduce the size of the data set and
the measurement time. This is done by first adapting the
single-channel Fourier subsampling technique in [10] to
the multi-channel case and then extending it with spatial
subsampling. The reconstructions obtained through this
approach are then compared to those of standard TFM by
applying both techniques to measurement data.

II. FMC MODEL

In SAFT-like algorithms [3], [4], measurement data
is modeled as a weighted sum of pulse echoes whose
time delays depend on the geometric relationship between
sensors and impedance discontinuities inside a specimen.
In the FMC procedure, one transmitter (Tx) transmits
a pulse at a time while all receivers (Rx) listen to the
echoes, and this is done for all elements in the sensor
array. The 2D single measurement channel case of such a
model can be expressed as

b
(a)
i,j (t) =

(
S∑

s=1

as · gi,j(xs, zs) · exp(jφs)

·δ(t− τi,j(xs, zs))

)
∗ h(a)(t),

(1)

where S is the model order, i.e. number of reflectors,
and each reflector has an associated location xs, zs and
produces an echo with amplitude as and phase φs. Here,
the superscript (a) denotes the Hilbert transform. The
subindices i, j indicate the Rx and Tx elements that
captured the measurement, and h(·) is the pulse shape
produced by the Tx element. The positions of the sensors
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Fig. 1: Illustration of time delay, AOA, and AOD in FMC mea-
surements. These quantities depend on geometric relationships
between reflector and sensors.

and flaws result in time delays given by

τi,j(xs, zs) =

√
(xs − xi)2 + z2s +

√
(xs − xj)2 + z2s

c0
.

Using the axes shown in Fig. 1, xi, xj are the horizontal
positions of the Rx, Tx elements, and their common
vertical position is set to z = 0. If the specimen is
homogeneous and isotropic, the speed of sound c0 is a
constant. The term gi,j(xs, zs) is an apodization function
that accounts for the sensor opening angle θ. We consider
a Gaussian apodization function defined as

gi,j(xs, zs) = exp
(
−((xs − xi)2 + (xs − xj)2)

(tan(θ) · zs)2

)
.

These relationships are illustrated in Fig. 1 along with
angles of departure (AOD) and arrival (AOA).

The usage of sampling phased arrays [1], [2] allows the
collection of FMC data that can be post-processed with
TFM, among other techniques. This data is composed of
multiple single-channel measurements of the form (1)
sampled at a rate fs, yielding measurements b

(a)
i,j ∈ CNT .

For a uniform linear array (ULA) with M elements, the
resulting M2 single-channel measurements are gathered
in b ∈ CNT ·M2

such that

b = [b(j−1)·M+(i−1)+1] = [b
(a)
i,j ]16i,j6M .

Next, a 2D array X ∈ CNT×Nx with elements xk,` is
used to represent the possible locations of point-like
reflectors as a regular grid with resolution ∆x, ∆z , where
a non-zero entry at element Xi,j means that there is a
reflector at the corresponding grid point. For simplicity, it
is assumed that ∆z is chosen in relation to fs so that
there are NT positions along the z direction and the
positions in the spatial grid match those in the temporal
grid.

The relation between X and b is defined by the linearity
assumption and our measurement approach. To clarify
this, we describe each vector b(a)i,j as

b
(a)
i,j = H ·Mi,j · vec(X), (2)

where

[Mi,j ]n,m = gi,j(xk,`) · δ (n− bfs · τi,j(xk,`)c) , (3)

with m = k · Nx + ` and H being a Toeplitz matrix
containing sampled copies of the pulse h(a)(t), and where
b·c is the floor function. Finally, we arrive at the model

b = (IM ⊗ IM ⊗H) ·M · vec(X), (4)

if we define M analogously to b. From now on, we will
set vec(X) = x. Based on this model, the next section
introduces the proposed compression scheme.

A. Compressed Sensing Model

A Fourier subsampling compressed sensing strategy
was studied for 3D SAFT in [10] where it was shown
that subsampled Fourier matrices F ∈ CNF×NT are
adequate for sensing. As per one of the approaches in
[10], NF samples are taken centered at the transducer
center frequency in order to build F . For the spatial
subsampling, we consider the selection matrices SMT

∈
RMT×M and SMR

∈ RMR×M , which select MT and
MR array elements, respectively, out of the total M .
Moreover, we consider a Kronecker model where the
same RX selection is used for each Tx element. With these
considerations, a compressed, noiseless FMC measurement
ỹ ∈ CNF ·MR·MT is given by

ỹ = (SMT
⊗ SMR

⊗ F )(IM ⊗ IM ⊗H)Mx. (5)

Let Φ = (SMT
⊗SMR

⊗F ) ∈ CNF ·MR·MT×NT ·M2

and
A = (IM ⊗ IM ⊗H)M ∈ CNT ·M2×NT ·Nx . With these
definitions, a compressed measurement can be modeled as

y = ΦAx + n ∈ CNF ·MR·MT (6)

with the noise vector n accounting for measurement noise
and model inaccuracies.

B. Inverse Problem

The goal is now to reconstruct x, i.e. X, given the
compressed measurements y based on (6). Since the
number of defects is small, X and x can be considered
sparse and we can reconstruct it by finding a solution to

min
x
‖y −ΦAx‖22 + λ‖x‖1. (7)

Problems of the form (7) can be solved with FISTA [11],
which alternates between gradient descent for the data
fidelity term ‖ · ‖22 and thresholding for the proximal
operator of ‖ · ‖1. Following [5], the regularization
parameter λ can be calculated as

λ = w1‖(ΦA)Hy‖∞ (8)

for some 0 6 w1 6 1.
For the gradient descent step, an approximation to the

largest singular value of ΦA must be found without storing
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Fig. 2: Reconstructions scenario: (a) illustrates the active ULA
elements for spatial subsampling and the reconstruction area
overlaid on the test specimen, (b) shows the region of the pulse
spectrum considered after Fourier subsampling.

the entire map [12], since it is impossible to do when
the measurements and the reconstruction grid are large.
The singular value is essentially the Lipschitz constant of
the functional to be minimized in the gradient step. This
constant’s value must not be under-estimated, since then
the function is assumed to be smoother than it actually is,
which prevents FISTA from converging. Exploiting the
structure of A, the approximation is obtained as

σ1 = w2

√
MRMTNTNx

2
‖h‖2, (9)

where h ∈ RNT×1 is a sampled pulse shape. Weight
w2 ≥ 1 is included in case the algorithm does not converge,
meaning the singular value has been underestimated.
Suitable values have been experimentally determined to
lie in the range 1 6 w2 6 10. The impact of Fourier
subsampling can be introduced by reducing ‖h‖2 based
on the bandwidth NF · fs/NT ; this has been omitted,
however, as it increases the risk of underestimating σ1. As
a final remark, FISTA entails an increased computational

effort: for NFISTA iterations, FISTA requires 2NFISTA more
matrix-vector products than TFM.

III. RECONSTRUCTION

To evaluate their performance, the proposed technique
and standard TFM were tested on real measurement
data. The specimen is a 12 cm tall aluminium block with
side drilled holes along its anti-diagonal and a speed
of sound c0 = 6300 m s−1. Data was gathered using the
central M = 16 elements of a 64 element ULA at a
sampling frequency of fs = 40 MHz, with NT = 1525
samples per channel. The sensor pitch and opening angle
are ∆s = 1.8 mm and θ = (8/45)π, respectively. The
reconstruction area spans the entirety of the array, with a
grid of size Nx = 321, NT = 1525 with ∆x = 0.36 mm,
∆z = 78.75 µm. A rough sketch of these parameters is
shown in Fig. 2 to illustrate the scenario.

Compression is done synthetically by preserving NF =
81 Fourier samples centered at fc = 4 MHz. Additionally,
spatial subsampling is performed by selecting the channels
corresponding to Rx elements i = {1, 9, 10, 16} and Tx
elements j = {3, 7, 14} and discarding the rest. It should
be noted that the selection matrices have an impact on
the ability to detect arbitrarily placed reflectors and the
presence of artifacts, and they should thus be obtained
through optimization. Further details are left to future work.
FISTA reconstructions are obtained after 100 iterations
of the algorithm, using tuning parameters w1 = 0.05,
w2 = 2, and σ1 = 4.0265× 104.

Fig. 3a shows the result of performing standard TFM
on the entire data set, with no subsampling. Three flaws
are clearly visible along the anti-diagonal, and one
more potential flaw on either side. Spatial subsampling
reduces the number of measurement cycles from 16 to
3, considerably reducing the inspection time, and each
cycle comprises 4 Rx elements. This comes at the cost of
artifacts that reduce the resolution and make it difficult
to determine the flaw locations correctly, as shown in
Fig. 3b.

For comparison, the performance of FISTA applied to
the entire data set is shown in Fig. 4a. The image appears
more focused than Fig. 3a, with four flaws clearly visible
and a potential fifth on the left side. Fourier and spatial
subsampling are then applied, yielding the reconstruction
in Fig. 4b. Although minor artifacts are present, four flaws
are still visible. The achieved quality is vastly superior
to that in Fig. 3b, performing close to TFM and FISTA
with the entire data set. Most notably, the processed
data volume contains only 0.25 % of the original number
of samples, with 0.5 % of the size due to the usage of
complex numbers.

IV. CONCLUSION

We have shown a compressed sensing model for
FMC data that can reduce measurement times and data
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Fig. 3: Reconstructions using TFM. (a) was obtained using
all the FMC measurement, while (b) exhibits artifacts due to
spatial subsampling.

volumes through Fourier and spatial subsampling. Images
reconstructed from such compressed measurements via
FISTA exhibit good resolution, comparable to that of
TFM and FISTA applied to complete data sets. The choice
of channels and Fourier coefficients has an impact on the
reconstruction quality and thus the design of the sensing
matrix warrants further effort in future work.
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and Wolfgang Müller. Synthetic Aperture Focusing and Time-of-
Flight Diffraction Ultrasonic Imaging–Past and Present. Journal
of Nondestructive Evaluation, 31(4):310–323, 2012.

[5] Ewen Carcreff, Nans Laroche, Dominique Braconnier, Aroune
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