
2-D Bayesian Displacement Estimation Improves
Contrast-to-Noise/Resolution Trade-off in Shear

Wave Elasticity Imaging
Thomas Ersepke, Tim C. Kranemann, and Georg Schmitz

Chair for Medical Engineering, Ruhr University Bochum, Bochum, Germany
{thomas.ersepke, tim.kranemann, georg.schmitz}@rub.de

Abstract—For time-of-flight reconstructions of shear wave speed
(SWS) data, tissue displacements are typically tracked using
windowed 1-D normalized cross correlation (NCC). The shear
wave arrival times at laterally offset tracking positions are used
for the reconstruction of the shear wave speed. Recent work
has pointed out that one main source of error in SWS imaging
is the uncertainty in the lateral tracking positions. Here, the
tracking positions can be laterally shifted towards constructive
interference of scatterers within the PSFs, used for the axial
window during NCC estimation. Since the variance of the tracking
position has a strong effect on the SWS estimates, large regression
kernels and regularization are used, and a trade-off between
an increased contrast-to-noise ratio (CNR) and a high lateral
resolution is required. In this work, we present a novel Bayesian
displacement estimation scheme incorporating RF data from a
local 2-D neighborhood of uncorrelated speckle ensembles. The
incorporation of a-priori knowledge from a 2-D neighborhood
leads to a reduced variance of the tracking position and thus
to an overall reduced variance of the shear wave arrival times.
In simulation experiments, SWS images based on the proposed
Bayesian estimator and the NCC estimator are compared with
regard to the CNR and the resolution. The SWS images based on
the proposed method yield an increase in CNR of up to twofold
compared to the SWS images of the NCC estimation of similar
resolution.

Index Terms—Elastography, shear wave imaging, speckle, mo-
tion estimation, bayes methods

I. INTRODUCTION

Shear wave elastography imaging (SWEI) is a clinically proven
method for providing information on the tissue elasticity in
addition to morphological ultrasound (US) data. Common
SWEI methods use either phase-shift-based displacement esti-
mators [1] or correlation-based estimators, e.g. the normalized
cross correlation (NCC) estimator [2], to track the propagating
shear wave. For many time-of-flight methods, the maximum
displacement or maximum slope of displacement is detected
at multiple tracking locations, and the differential arrival times
as well as the distance of the tracking locations are used to
calculate the shear wave speed, which is then related to the
tissue stiffness [3].
With regard to system-dependent sources of error in SWEI,
the accuracy of the displacement estimates can be limited by
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thermal noise, shearing-induced decorrelation [4] and finite
tracking kernel lengths, bandwidth, and sampling rates [5] .
These errors can therefore be assigned to features of the RF
signals.
However, recent work has found that one main source of error
in SWS imaging is the uncertainty in the tracking positions
of the displacement estimates [6], [7], [8]. Here, the tracking
positions can be laterally shifted towards constructive interfer-
ence of scatterers within the PSFs, used for the axial window
during displacement estimation. This position error leads to a
delayed or early detection of the shear wave peak arrival time.
Consequently, the measurements at inaccurate positions lead
to a prolonged or shortened time delay measurement. Since
inaccurate tracking positions have a strong effect on the SWS
estimates, large regression kernels and additional regularization
are used in SWEI reconstruction algorithms and a trade-off
between an increased contrast-to-noise ratio (CNR) and a high
lateral resolution is required [9].
In this work, we propose a novel displacement estimator, which
is optimized with regard to the reduction of the tracking position
error. The proposed method is based on the Bayesian displace-
ment estimation framework in [10], where a-priori information
is combined with the a correlation-based similarity metric of
a centered estimate. For the proposed method, RF data from
a local 2-D neighborhood of uncorrelated speckle ensembles
is incorporated into the estimation. The incorporation of a-
priori knowledge from a 2-D neighborhood leads to a reduced
variance of the tracking position and thus to an overall reduced
variance of the shear wave arrival times. The proposed 2-D
Bayes estimator is compared to the standard NCC estimator
using numerical simulations. For the reconstruction of the SWS
data, the multi-resolution method [9] is employed. The resulting
SWS images are investigated with regard to their CNR and
resolution.

II. METHODS

A. 2-D Bayes Displacement Estimator

For the estimation of the axial displacement, two axial segments
of RF data are defined

s1(n+ k) = s(xi, zk , t1), n ∈ [−N/2,+N/2] , (1)
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sl(n+ k) = s(xi, zk , tl), n ∈ [−N/2, +N/2], l ∈ [2, L] ,
(2)

where s1 is an axial segment of an RF line in a reference
frame at time t1 and sl is a segment of an RF line in a later
frame at time tl after the displacement of the scatterers. Both
signal segments s1 and sl have the same lateral position xi.
The segments s1 and sl are centered around the same axial
position zk with equal segment length N .
In general, the Bayes theorem for the estimation of the dis-
placement at the axial location k can be written as

pk,i(u|s1, sl) =
pk,i(s1, sl|u) pTk,i

(u)∫
pk,i(s1, sl|u) pTk,i

(u) du
(3)

where pk,i(u|s1, sl) is the posterior probability density function
(PDF). The posterior PDF is combined by the current informa-
tion pk,i(s1, sl|u), which resembles a similarity metric of s1(n)
and sl(n), and the prior information pTk,i

(u). In contrast to
[10], [11], this prior information is obtained from segments in
a local, 2-D neighborhood Tk,i. The denominator in (3) scales
the posterior PDF. Because only the argument which maximizes
pk,i(u|s1, sl) is of interest, (3) can be rewritten in the log-
domain

ln(pk,i(u|s1, sl)) ∝ ln(pk,i(s1, sl|u)) + ln(pTk,i
(u)). (4)

According to [10], the similarity metric is formulated as a sum
of squared differences (SSD)

ln(pk,i(s1, sl|u′)) =

− 1

4σ2
noise,k,i

N/2∑
m=−N/2

(s1(m+k)−sl(m+k− ûin,k,i−u′))2

(5)

where sl(n− ûin,k,i) was already undelayed towards s1(n) by
an initial estimate ûin,k,i to reduce the search region of (5)
and u′ is the residual displacement. The estimated noise power
σ2

noise,k,i describes the amount of uncertainty and weights
ln(pk,i(s1, sl|u′)) with regard to (4). It is derived using a peak
correlation coefficient approach for estimating the local SNR
η̂SNR,k,i at location (xi, zk)ᵀ [10]

η̂SNR,k,i =
ρk,i

1− ρk,i
, (6)

where ρk,i is the peak correlation coefficient of the normalized
cross correlation between s1(n) and sl(n). Then, σ2

noise,k,i is

σ2
noise,k,i =

σ2
RF,k,i

η̂SNR,k,i + 1
(7)

where σ2
RF,k,i is the power of the RF data and is estimated

by calculating the geometric mean of the two signal powers of
s1(n) and sl(n) [10].
We propose to use a-priori information from a ring of neigh-
boring estimates, consisting of the two direct axial neighboring
estimates (AN), two direct lateral neighboring estimates (LN)
and the 4 diagonal neighboring estimates (DN). Fig. 1 depicts

ln p , (s₁,s₂|u)ᵏ �
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Figure 1: Workflow of the Bayesian displacement estimation: (a)
ln(pk,i(s1, sl|u)) and ln(pTk,i

(u)) are combined in (4). (b) 2-D
neighborhood of initial estimates. The weight of the initial estimates is
determined by the euclidean distance of the particular segments to the center
segment.

the estimates from the 2-D neighborhood representing the a-
priori information. The weights are determined according to
the distance of the neighboring segments to the center segment.
With an increased distance to the center segment, it is assumed
that the value of additional information for the estimation is
decreasing. The total distance used for scaling the weights to∑

j∈Tk,i
wj = 1 is given by

dtot = 2∆z + 2∆x+ 4
√

(∆x)2 + (∆z)2 . (8)

where ∆z is the axial discretization of the NCC estimates
(depending on N and the overlap). Further, ∆x is the lateral
discretization of the RF data and hence the lateral discretization
of the NCC estimates. With the total distance, the particular
weights of the AN, LN and DN are calculated by wAN =
∆z/dtot, wLN = ∆x/dtot , wDN =

√
(∆x)2 + (∆z)2/dtot.

When the center segment was located at one side or in one
corner of the region of interest, the weights of the missing
neighboring estimates were set to zero and dtot was calculated
based on the remaining weights.
The prior information pTk,i

(u′) is incorporated in the manner
of a generalized Gaussian-Markov random field

ln(pTk,i
(u′)) = − 1

pλpB

∑
j∈Tk,i

wj|ûj − ûin,k,i − u′|p , (9)

where ûj are initial displacement estimates located within
the neighborhood Tk,i. As in (5), those estimates are already
undelayed by ûin,k,i. The parameter p specifies the shape of the
prior distribution ln(pTk,i

(u′)) with p ∈ [1; 2]. For p = 2, the
prior PDF equals a Gaussian distribution, where discontinuities
in displacements between segments are stronger penalized.
The parameter λB is the main weighting parameter which
determines how strongly ln(pk,i(u|s1, sl)) is influenced by the
prior PDF.
The estimate ûBayes,k,i is found through updating ûin,k,i by
the residual displacement which maximizes the posterior PDF
ln(pk,i(u

′|s1, sl))
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Table I: US SIMULATION PARAMETERS

Parameter Value/ Range

Center frequency fc 7.8 MHz
Bandwidth (-6dB) 101.5 %

Sampling frequency fs 1 GHz
Speed of sound c 1540 m/s

Probe focus 25 mm
Attenuation none

Element width 180µm
Element pitch 200µm

Sampling period ∆t 200µs
SNR of RF data ηSNR 20dB, +∞

ûBayes,k,i = argmax
u′

(ln(pk,i(u
′|s1, sl))) + ûin,k,i . (10)

After updating the posterior PDF in (10), ûBayes,k,i is saved as
new initial estimation ûin,k,i and the algorithm is executed for
the next iteration. For the 2-D Bayes estimator, a fixed number
of iterations Nit = 5 was used and the two Bayes parameters
were set to λB = 8 · 10−9 m and p = 2.

B. Numerical Simulations

In order to validate the feasibility of the proposed estimator
for SWS imaging, simulations of plane shear waves were
realized by solving the 1-D linearized shear wave differential
equation numerically. Therefore, a finite differences time do-
main (FDTD) method was implemented in MATLAB. For the
simulations of a 2-D plane shear wave, the 1-D wave simulation
was extended in the z-direction.
For the shear wave excitation, the initial displacement function
was chosen to resemble a typical shear wave in elastography
applications. The center frequency was chosen to 350 Hz and
the bandwidth was chosen to 200 %. The displacement mag-
nitude was set to 10 µm. Two homogeneous SWS regions
with clow = 2.2 m/s and chigh = 5 m/s, separated by a vertical
boundary, were simulated.
The US simulations were performed using the US simulation
toolbox Field II [12]. Walking aperture beamforming was used
in this simulation. For each line of RF data, a subaperture,
centered around that RF line, was used. A summary of the
simulation parameters is given in Tab. I.
A number of 35 scatterers per resolution cell was used for
the simulation, while it has been shown that 11 scatterers per
resolution cell are already sufficient to achieve full speckle
statistics [13]. The RF signal sampling frequency fs was set
to 1 GHz. The first frame of US data was simulated with the
initial spatial distribution of scatterers. Thereafter, the scatterer
positions were displaced by the simulated shear wave field.
Subsequent US frames were simulated with a sampling period
of ∆t = 200µs. White Gaussian noise of varying noise powers
was added to the simulated data leading to varying signal-to-
noise ratios (SNRs) ηSNR of the acquired RF data.

C. Displacement Estimation

As reference method, 1-D windowed NCC [14] was used.
As proposed in [14], sub-sample accuracy is achieved in two
stages in this work. First, the acquired RF data is up-sampled
using Fourier-domain interpolation. Secondly, a parabolic fit
to the peak of the cross-correlation function is performed
and the argument, which maximizes the function is derived
algebraically.
The segment length N of the NCC and the 2-D Bayes estimator
was set to 2.5λ and the relative segment overlap to 75% leading
to ∆z = 0.625λ. The lateral discretization of the RF data was
∆x = 200µm. The 2-D Bayes estimator was implemented as
described in II-A.

D. Shear Wave Speed Reconstruction

For the reconstruction of the SWS data ĉ, the multiresolution
approach by Hollender et al. [9] was employed. Here, the time
delays are measured between all combinations of locations
within a kernel of size K. The time-of-flight problem is
presented as an overdetermined system of linear equations that
can be directly solved using the least-squares solution. Spatial
constraints on the multiresolution solution are imposed by
Tikhonov regularization, weighted by λΓ, for additional noise
suppression at the expense of lateral resolution.

E. Quality Metrics

To calculate the contrast-to-noise ratio (CNR) of the SWS
estimates, the mean values c̄high, c̄low of the SWS estimates
ĉ as well as the variances of the estimates σ2

high, σ2
low were

determined on each side of the vertical boundary. The CNR
was computed as

rCNR =
|c̄high − c̄low|√
σ2
high + σ2

low

. (11)

To determine the lateral resolution, the width of the verti-
cal boundary was measured. Therefore, the mean SWS was
calculated along each column. Then, the intercepts of the
mean SWS profile with the constants c̄high and c̄low were
determined, which were closest to the location of the boundary.
The resolution was determined as the distance between the two
intercepts.

III. RESULTS

Fig. 2 shows the SWS reconstruction results for both displace-
ment estimators. For the reconstruction, the kernel size was set
to K = 3 and the regularization was set to λΓ = 10. It can
be seen that areas of homogeneous SWS appear much more
noisy for the NCC result, compared to the Bayes result. At
the same time, the vertical boundary of the Bayes result is not
significantly more blurred than the boundary of the NCC result.
Fig. 3 shows the CNR/resolution trade-off, with regard to
the SWS images based on the two displacement estimation
schemes. In Fig. 3.a, the results of the simulations without
added noise (ηSNR = +∞) are depicted. Here, λΓ was set to
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(a) NCC result,
K = 3 , λΓ = 10
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(b) Bayes result,
K = 3 , λΓ = 10

Figure 2: Reconstructed SWS images for the SWEI simulations without added
RF data noise (ηSNR = +∞). The SWS reconstruction parameters were
set to K = 3 and λΓ = 10. (a) NCC displacement estimation applied
prior to reconstruction, (b) Bayes displacement estimation applied prior to
reconstruction.

10 and 100, respectively, and the kernel size was varied leading
to varying CNR and resolution values. For both regularization
settings, the Bayes results showed an improved trade-off be-
tween the CNR and the resolution. This becomes evident for
the NCC result with a resolution of 900µm and a CNR of
12. Here, the corresponding Bayes results showed either an
increased CNR (19) and comparable resolution or an improved
resolution (550µm) and comparable CNR.
These findings are further confirmed, when noise was added
to the simulated RF data. In Fig. 3.b, the NCC and the Bayes
results are shown for ηSNR = 15 dB. Similar to Fig. 3.a, the
Bayes results outperformed the NCC results, with regard to
the CNR/resolution ratio of the SWS images. In comparison
to results without RF data noise, the resolution of the SWS
images was slightly decreased for both estimators.

IV. CONCLUSIONS

In SWEI, inaccurate positions displacement estimates caused
by the speckle effect have a major impact on the quality of
SWS images [6], [7]. For the optimization of displacement
estimation algorithms with regard to the applicability for SWEI,
this circumstance needs to be taken into account.
We proposed a novel Bayesian displacement estimator where
a-priori information from a local 2-D neighborhood is incor-
porated. By using this information from uncorrelated speckle
ensembles, the position error could be reduced. This was
confirmed by the results in the simulation experiments with
and without added RF data noise. Compared to the conventional
NCC estimation, the proposed displacement estimation, leads
to SWS images with an overall increased CNR/resolution trade-
off and a gain in CNR up to the factor of 2 compared to the
NCC results of similar resolution.
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(a) ηSNR = +∞
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Figure 3: Contrast-to-noise ratio and resolution trade-off curves for both
estimation schemes. The kernel size K and regularization parameter λΓ were
varied, leading to varying CNR and resolution values. The Bayes results (green
triangles) show an improved CNR compared to the NCC results (blue squares)
of similar resolution.
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