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Abstract—A neural network-based approach for detection of
sonar targets in air is presented in this contribution. Our
approach may facilitate autonomous mobile systems to reliably
detect and classify objects in their surrounding by using sonar
information. This task might be extremely important in changing
as well as unorganized environments. We perform target iden-
tification with long short-term memory networks as classifiers.
Such are capable of dealing with variable numbers of echoes
from multiple positions per input sequence, which facilitates
more flexible operation. The impact of the number of recording
positions per sequence and of noise is investigated. Furthermore,
we demonstrate the improvement in classification performance
in comparison to previously obtained results from multi-layer-
perceptrons.

Index Terms—sonar measurements; sonar detection; neural
networks; feature extraction

I. INTRODUCTION

Autonomous mobile vehicles – such as driverless transport
systems and robots – are usually equipped with cameras and
laser scanners to recognize their environment and navigate in
it. Since the mentioned sensors are susceptible to variations
in environment lighting conditions and optical properties, the
systems are also often complemented with sonar sensors to
improve navigation reliability. The sonar sensors normally only
return distance measurements to the closest obstacles, but there
is more information contained in the echoes, which may be
exploited to aid navigation by ultrasonic scene as well as target
recognition [1], [2]. For proper function of such approaches
in real-world scenarios, a challenge that has to be resolved is
that echo signals can be considerably affected by environment
conditions, such as local changes in temperature, moisture,
humidity, and air flow. To deal with such influences, we aim
to utilize a machine learning approach with artificial neural
networks, because these are known to cope well with noisy,
distorted, and quantized input data. First results were obtained
with multi-layer perceptron networks by the authors in [3].
In the currently presented work, the suitability of long short-
term memory networks (LSTMs) is evaluated as these can
deal with sequential input data of differing length [4] and
should consequently be better suited for a flexible embedded

implementation on a robot. For this purpose, the influence of
input sequence data length as well as noise is analyzed.

II. MATERIALS AND METHODS

A. Measurement Setup and Procedure

Data sets for classification were generated from echoes
that were recorded with an automated laboratory setup (see
Fig. 1). Thereby, many sequences of echoes could be recorded
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Fig. 1. Measurement setup with two translation stages (x and y) and a rotation
stage (α). The targets are moved in y direction as well as rotated by the angle
α. The speaker and the microphone are moved along the x axis. Thereby,
echoes can be recorded at relative positions, which correspond to those of a
robot passing by a target.

at various subsequent positions in order to emulate echoes
received by a robot driving by a sonar target. For each sequence,
a randomized start position within a distance of +/-0.5m in
x direction from the target, a randomized number of echoes
per sequence, a random target angle (α within +/-60 deg), and
random y target distance (within 0.5m to 2.2m) were set.
The geometric x distance between subsequent echo recording
positions of a sequence was set to be 5 cm. The translation
stages had to stop at each recording position due to hardware
limitations. This led to mechanical oscillations of the pillar on
which the microphone as well as the speaker were mounted
and, accordingly, further randomness in the data. For signal
generation, recording, and processing, the following hardware
was utilized: data acquisition device NI-USB 6356 (National
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Instruments, 16 bit, 1.25MSa s−1), a desktop computer, an
electrostatic Senscomp series 7000 ultrasonic speaker, and
a 1/4′′ Bruel&Kjaer measurement microphone. The echo
recordings were saved on a computer for processing and neural
network training.

Rectified linear downchirp signals (52 kHz down to 48 kHz,
1ms) were emitted for pulse-echo operation. The sound
pressure level was 110 dB re 20 µPa at a distance of 1m
from the speaker.
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Fig. 2. Three different target shapes are used for classification: a) flat (discs),
b) convex (spheres), and c) concave (hollow hemispheres). Classification was
only performed with respect to shape and shall be independent of target size.
As a consequence, each target shape was given in three different sizes with
a characteristic dimension d of 60mm, 80mm, and 100mm to make the
classifiers generalize regarding target shape [5]. The hemispheres’ hollow side
is directed towards the speaker and microphone.

Flat (discs), convex (spheres), and concave (hollow hemi-
spheres) shapes were chosen as target primitives (see Fig. 2),
which are basic shapes into which arbitrary targets may be
categorized for classification. The primitives’ echo reflection be-
havior should differ considerably. At discs, primarily mirror-like
reflection occurs, at spheres’ surfaces, the impinging acoustic
waves are reflected across a large angle due to the surface
curvature, and at hemispheres, directed reflection mainly back
into the impinging waves’ direction occurs (”retroreflection”).
More detailed explanations as well as analyses are given in
[3] and [6]. Different from [3], here we use spheres instead
of cylinders because tilt movements’ influences on echoes
are negligible for spheres. Also, greater (+/-0.5m instead of
+/-0.15m in x direction) and randomized distances from the
targets are investigated, which leads to more diverse, less
redundant echo data. Details not mentioned here are identical
to the ones from [3].

B. Data Set Generation

The echo recordings are processed and features are extracted
to create samples for the training (70%), validation (15%) and
test data sets (15%), as shown in Fig. 3. In the current context,
the term ”feature” denotes any representation of data that may
contain relevant information for classification. A more compact
data representation leads to more efficient computation, since
fewer parameters need to be learned and calculated. However,
care must be taken because meaningful information will be
discarded if a too compact representation is chosen. All features
are combined in so-called feature vectors, which are the actual
input to a classifier. Here, the term sample or data set sample
denotes a set of associated feature vectors for an entire sequence
of echoes and should not be confused with single ADC samples,
which represent the output from an analog to digital converter
(ADC).

The main preprocessing steps for a feature vector xt are
depicted as well as explained in Fig. 4. The specific feature
selection is motivated as well as elaborated in detail in [3].
Spectrogram calculations are performed by means of a short-
time fourier transform (STFT) with a window length of
256 ADC samples and 50% overlap. Moreover, a threshold
is defined for r̂yx, which has to be reached for at least one
echo signal in a sequence. Otherwise, the corresponding data
set sample is discarded. For the currently examined data, a
suitable threshold was found to be 12 dB above the noise RMS
level in the pulse-compressed echoes.

Data sets were generated with constant echo numbers per
sequence (from one to ten) as well as with constant additional
white noise levels for sequences of five echo positions (from
50 dB to 100 dB re 20 µPa). Furthermore, we generated
example data sets to gain an impression of general neural
network performance for miscellaneous parameters:
• ”EXnb”: variable number of echoes per sequence (from

one to ten), randomized additional noise with a peak noise
level of 70 dB re 20 µPa;

• ”EXnbss”: same as EXnb except for five times subsam-
pling, which results in a sampling rate of 250 kSa s−1

and an accordingly set STFT window length of 32 ADC
samples;

• ”EXwb”: same as EXnb, but for wideband downchirp
excitation signals (100 kHz to 52 kHz)

• ”EXnbMLP”: same as EXnb, but with a constant number
of five echoes per sequence, so that multi-layer perceptrons
(MLPs) can be trained for comparison.

Each data set comprises 4500 samples, which are evenly
distributed among the available sonar targets (500 data set
samples per sonar target). Data set sizes decreased for large
noise levels (above 80 dB re 20 µPa) to about 3000 samples
because the noise threshold for target discovery increased.

C. Classification with Artificial Neural Networks

LSTMs are deployed as shape classifiers, whose main asset
is that sequences with variable length can be used as input
data. This is a major advantage in comparison to simple feed-
forward networks, whose input feature vectors’ dimensions
must all be fixed. With an LSTM, it is even possible to generate
classification output that is updated for each subsequent echo.
As a consequence, well identifiable sonar targets can be detected
quite fast and less easily identifiable targets may be detected
after more echo recordings, which could then further improve
navigation performance. The basic structure of an LSTM block
is depicted as well as explained in Fig. 5.

The LSTM networks that were evaluated in the presented
work were selected with a randomized parameter study. The
best performing networks comprise 32 hidden units and were
trained with a stochastic gradient descent optimization function
with momentum. For training, the learning rate is 0.01, the
momentum is 0.9, the mini batch size is 512, and training
was executed for 4000 epochs. Among the evaluated networks,
the shallow ones without additional hidden layers showed
best results. For these networks, ht is directly fed into an

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

WeH7.2



for n
subsequent

positions

(sequence)

recording

recording

recording

preprocessing + feature extraction

preprocessing + feature extraction

preprocessing + feature extraction

movement step

movement steps + recordings

feature vectors xt

x1

x2

xn

sample

classifier

output class

Fig. 3. Classification procedure; from echo recording and sample generation to classification itself.
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Fig. 4. Preprocessing and feature extraction; from raw echo (input voltage u)
to feature vector. First, pulse-compression is performed by cross-correlation
(ryx) with a previously recorded excitation signal. The peak (r̂yx) that belongs
to the sonar target’s echo is selected from the pulse-compressed echo and
its time delay is set as propagation delay assumption TEcho. In addition, a
spectrogram of the raw signal is calculated with a short-time fourier transform
(STFT). A region of Interest (ROI) is selected, which is centered around TEcho.
ROIs have got a duration of 2ms and cover the excitation frequency range.
The resulting feature vector xt comprises a concatenation of the logarithmized,
flattened ROI, TEcho as well as the logarithmized peak value r̂yx.
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Fig. 5. Structure of a long short-term memory network (LSTM) block. Memory
is realized by hidden state variables (ct: cell state, ht: hidden/output state) and
gates (f , i, g, o), which can enable modification of the variables depending on
variables from the previous state (ct−1, ht−1) as well as learned activation;
f : forget gate with sigmoid activation, i: input gate with sigmoid activation, g:
cell candidate gate with tanh activation, o: output gate with sigmoid activation.
ht may then be input to succeeding networks or network layers, such as multi-
layer perceptrons (MLPs) or convolution, fully connected, and classification
layers. Essentially, each gates itself is a fully connected perceptron layer [7].

output layer for classification (fully connected layer, softmax
function, and classification layer). Work is currently going on
to find suitable deep structures, which may yield increased
performance. MLP parameters are identical to the ones from
[3]. For each parameter configuration, five neural networks

were trained on four different data sets each, adding up to 20
trained networks per evaluated parameter configuration.

III. RESULTS AND DISCUSSION

We evaluated the neural network performance by total
accuracy and AUC (area under curve for receiver operating
characteristic ROC) for the test sets. The last classification
outputs returned by the LSTMs for each sequence were used
as labels. While the total accuracy is a measure of a classifier’s
total performance, AUC is a measure of individual class
performance. Both measures are to be maximized towards
100%. Total accuracy is the ratio between the number of
correctly classified samples and the total number of samples.
AUC is more complex and a thorough explanation is outside
the scope of this paper. Please see [8] for details.

It can be seen from Fig. 6 that accuracy increases for larger
numbers of echoes per sequence but that also a single echo
contains much relevant information. It is also obvious that the
employed LSTMs’ performance clearly surpasses the MLPs’.
An important factor here is the number of learned parameters,
which scales linearly with the number of echoes per sequence
for MLPs but is constant for LSTMs (compare also l in Table I).
Another observation is that hollow hemispheres show the best
results and seem to be clearly distinguishable from spheres as
well as discs (Fig. 7).
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Fig. 6. Total network accuracy with respect to the number of positions per
echo sequence for shape classification; comparison of LSTMs and MLPs;
mean and standard deviation based on 20 trained networks for each data point.

The influence of additional random noise can bee seen in
Fig. 8 and Fig. 9. It appears that the decrease of accuracy
up to 80 dB is mainly caused by ambiguity between discs
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Fig. 7. Area under curve (AUC) of receiver operating characteristic (ROC)
for shape classes with respect to the number of positions per echo sequence;
for the LSTM networks from Fig. 6.

and spheres. This is in contrast to hemispheres, which can
be identified quite well even for high noise levels (Fig. 9).
Hemispheres’ retroreflecting properties may play an important
role here, since these lead to better echo signal-to-noise ratios.
The noise range was chosen to start at 50 dB because a noise
level without added noise was observed between 45 dB and
55 dB.
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Fig. 8. Total network accuracy with respect to additional white noise for
shape classification; for LSTMs and MLPs; five echoes per sequence; mean
and standard deviation based on 20 trained networks for each data point.
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Fig. 9. AUC of ROC for different shape classes with respect to additional
white noise; for the LSTM networks from Fig. 8.

TABLE I
PERFORMANCE MEASURES FOR EXAMPLE DATA SETS

EXnb EXnbss EXwb EXnbMLP
Accuracy mean 83.19% 73.37% 67.54% 78.47%
Accuracy std 1.25% 1.73% 7.15% 6.13%

’di’ AUC mean 93.10% 85.62% 77.73% 87.73%
’di’ AUC std 0.76% 1.35% 7.10% 6.74%

’he’ AUC mean 98.32% 95.43% 95.87% 97.73%
’he’ AUC std 0.34% 0.66% 1.60% 0.69%

’sp’ AUC mean 94.19% 88.22% 82.91% 88.59%
’sp’ AUC std 0.88% 1.28% 7.53% 6.28%

l 94 107 457 470
’di’: discs. ’he’: hemispheres. ’sp’: spheres.

l: Feature vector length; xt ∈ Rl.

From Table I, one can see that the current implementation of
EXnb provides the best overall values and that hemispheres can
be well identified for all parameter configurations. We assume
that better results for wideband excitation signals may be
achieved than with the current LSTM implementation (EXwb),
as is indicated by the results from [3].

IV. CONCLUSION

Successful use of LSTMs for sonar target classification in
air was shown and an increase in performance as well as
flexibility in contrast to previously evaluated MLPs could be
demonstrated. Analyses of echo recording numbers as well as
noise demonstrate that concave targets can be identified already
with few echoes and even a considerable amount of noise. Such
targets may thus be well suited as passive additional artificial
acoustic navigation points. Classification of flat and convex
targets is also possible, but requires more echo recordings
and is more susceptible to noise. The results regarding noise
performance motivate an embedded implementation of a sonar
system on a mobile robot with commercial off-the-shelf
components, such as piezoelectric transducers and MEMS
microphones, which is currently under development.
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