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Abstract—Echocardiographic imaging is a well-established
clinical modality to assess cardiac morphology and function.
However, accuracy of visual reading as well as performance
of algorithms designed to measure cardiac characteristics, and
as a consequence the diagnostic value of the echocardiographic
imaging, can significantly be degraded by the presence of image
artifacts such as (stationary) reverberations. Although several
filtering techniques have been proposed in the literature to
tackle this problem, the current study sought to investigate
whether deep learning can offer better artifact removal. Given
the spatiotemporal nature of the reverberation artifacts, a 3D
(i.e. 2D plus time) deep convolutional neural network (3D U-Net)
was trained to filter simulated artifacts that were superimposed
onto ultra-realistic synthetic 2D echocardiographic sequences.
Performance of 3D U-Net was compared with the singular value
decomposition (SVD) technique. The obtained results confirmed
the utility of deep learning for artifact filtering and showed its
advantage over SVD in handling moving artifacts.

I. INTRODUCTION

Transthoracic echocardiography has become the primary
noninvasive imaging modality to quantify myocardial mor-
phology and function. Nevertheless, the diagnostic value of
this imaging technique can negatively be influenced by acous-
tic clutter and especially the reverberation artifact. This type
of clutter has a spatiotemporal nature as it is mainly generated
by some of the slow-moving organs like the ribs and lungs.

Several methods have been proposed in the literature for
clutter rejection that mainly work by linear decomposition
of the acquired echo data into clutter and signal of interest
components using a set of bases. These bases can be defined
a priori or be learned from the data. The discrete Fourier
transform [1] and the wavelet transform [2] are examples of the
clutter filtering methods that use pre-defined bases. Singular
value decomposition (SVD) is the most widely used approach
to learn bases for clutter filtering [3], [4] but other dictionary
learning techniques like K-SVD [5] and morphological com-
ponent analysis [6] have been also used for this purpose.

Compared to the methods that use pre-defined bases for
clutter rejection, the learning strategies have the advantage of
adapting their bases to the data characteristics enabling them to
better filter clutter artifacts. Nonetheless, the learning strategies
that are used in the SVD-based filtering methods have some
limitations that hamper their efficient operation. Linear data
modeling, lack of hierarchical representation of the data, using
a relatively small set of the bases for decomposing the data
and regional filtering are some of these limitations.

These limitations can be circumvented by using a deep
convolutional neural network (CNN) that provides hierarchical
representation of the data based on a non-linear combination
of a lot of bases/kernels while taking global characteristics of
the data into account.

As such, CNNs have been recently used in several studies as
a sophisticated image processing tool in order to enhance the
quality of the ultrasound images. In [7], [8] CNNs have been
employed in the structure of a generative adversarial network
for despeckling of the ultrasound images. Perdios et al. [9]
used CNNs to learn a mapping between low- and high-quality
subspaces of RF images to enhance the images reconstructed
from a single plane wave. A 3D CNN architecture was
trained in [10] to remove reverberation and thermal noise from
ultrasound channel data.

Inspired by the promising performance of CNNs in improv-
ing the quality of the ultrasound data, a 3D CNN framework
is used in the current study for spatiotemporal clutter filtering
of 2D echocardiographic B-mode sequences. The rationale
behind using a 3D CNN for clutter filtering is to account for
the spatiotemporal nature of this type of artifact. Given that
reverberation is mainly generated by some of the slow-moving
organs like the ribs and lungs, it affects 2D B-mode images
throughout the cardiac cycle resulting in artifact patterns that
slowly move in time. Hereto, a 3D CNN can be designed in
such a way that learns the behavior of the clutter both in space
and time in order to suppress it efficiently.

The remainder of this paper is organized as follows. Section
II describes the data, architecture of the employed 3D CNN
and its training details. Results are presented in Section III
and the obtained results are discussed in Section IV. Finally,
Section V draws conclusions and summarizes the paper.

II. MATERIALS AND METHODS

A. Data

In order to learn how to remove clutter from an input
sequence of 2D echocardiographic images, a 3D CNN should
be provided with a corresponding clutter-free sequence as
its output. It is thus of paramount importance to use output
sequences that are completely free of artifacts in order to
make sure that the network learns well how to differentiate
clutter from signals of interest. With this in mind, we used
a database of ultra-realistic synthetic 2D echocardiographic
sequences [11] in our experiments. The database consisted of
30 apical 4-chamber sequences of six vendors each with five
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Fig. 1. (a) Schematic illustration of training a 3D U-Net with cluttered 2D
echocardiographic sequences as input to the network and their corresponding
clutter-free sequences as its output. All 50 frames of a sequence were fed into
the input and the temporal information of this sequence was preserved during
the encoding phase. (b) In order to make the network robust to the starting
point of the sequence in the cardiac cycle, multiple input-output sequences
were generated from a given sequence by shifting the start (showed with blue
arrows) and end frames (showed with red arrows) in time.

electro-mechanical models of a heart including one normal and
four ischemic motion patterns. Each subject had one simulated
heart beat with 50 2D images resized to 128 × 128. In order
to generate artifactual 2D sequences, clutter artifacts were
heuristically superimposed as three bright ellipsoidal regions
with small, medium and large sizes onto the left and right
edges of the sector images. To simulate slow-moving clutter,
the ellipsoids were moved by one pixel every four frames in
the radial direction.

B. 3D CNN Architecture & Training

Motivated by the successful application of the deep auto-
encoders in handling different image processing tasks, an
efficient convolutional auto-encoder network called 3D U-Net
[12] was used for clutter filtering in our study. The architecture
of the network was similar to that of the original 3D U-Net
except for the stride and max pooling of the time dimension
that was set to one. As a result, the temporal information
was preserved in the encoding phase enabling the network to
learn the behavior of the clutter patterns throughout the whole
cardiac cycle (Fig. 1(a)).

The network was trained with the artifactual input se-
quences, each of size 128×128×50, and their corresponding
artifact-free sequences. In order to train a network that is
robust to the starting point of the sequence in the cardiac cycle,
multiple input-output sequences were created by shifting each
sequence pair in time such that the starting frames were taken
from different time points during the cardiac cycle (Fig. 1(b)).
As a result of this process, the size of the database was also
increased by a factor of 10.

TABLE I
MEAN AND STANDARD DEVIATIONS OF THE RMADS COMPUTED FROM

THE CLUTTER-FREE AND CLUTTERED FRAMES AS WELL AS
CLUTTER-FREE AND CLUTTER- FILTERED FRAMES FOR ALL FRAMES OF

THE TESTING SUBJECTS.

Clutt.-free vs Clutt. Clutt.-free vs Clutt.-filt. Clutt.-free vs Clutt.-filt.
3D U-Net SVD

18.64 ± 4.88 7.93 ± 1.43 25.77 ± 4.76

The leave-one-out cross-validation technique was used to
train and validate the clutter filtering network. The train-
ing dataset was augmented by applying rotation, horizon-
tal/vertical flip and height/width shift transformations to the
sequences where all 2D B-mode images belonging to an input-
output sequence pair were transformed similarly. The network
was trained using the Adam optimizer with a learning rate
of 10−4, mean-squared-error as loss function and 30 epochs
using the Keras library with the TensorFlow backend and one
GPU (NVIDIA Titan V, 11GB VRAM).

C. SVD filtering

In order to compare the filtering performance of 3D U-
Net with the classical learning-based filtering methods, the
SVD filter was implemented based on the multi-ensemble
approach using a region of interest (ROI) of size 10×10 pixels
[3]. An eigenvector was included in the set of clutter eigen-
components if the ratio of its eigenvalue to the most dominant
eigenvalue was larger than a threshold value of 7.5%.

III. RESULTS

Examples of the clutter-free and cluttered frames of the em-
ployed vendors and their corresponding clutter-filtered frames
using 3D U-Net and SVD are shown in Fig. 2. The zoomed-in
clutter-filtered regions show the promising performance of 3D
U-Net in rejecting the clutter patterns and reconstructing the
pixels behind them. Although the SVD filter could, to some
extend, suppress the cluttered regions, it failed to reconstruct
the clutter-free pixels and led to extended artifactual regions.

The filtering performance of 3D U-Net and SVD were quan-
titatively assessed by computing a regional-mean-absolute-
difference (RMAD) metric as follows:

RMAD =

∑N
i=1 |xi − x̂i|

N
(1)

In (1), x̂i is the grayscale value of the ith pixel inside a
cluttered or clutter-filtered region with N pixels (shown by a
red rectangular in Fig. 2) and xi is the corresponding grayscale
value of that pixel in a clutter-free image. This metric was
computed for all frames of a given sequence and for all testing
subjects and the obtained mean and standard deviation values
are listed in Table I.

As can be seen from Table I, utilizing 3D U-Net yielded
a mean RMAD value of 7.93 between the clutter-free and
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Fig. 2. Examples of the clutter-free and cluttered frames from the six vendors that were used in our experiments and their corresponding clutter-filtered images
generated by 3D U-Net and SVD. Zoomed-in versions of the cluttered/clutter-filtered regions are shown for an easy evaluation of the filtering performance.
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clutter-filtered regions which was significantly smaller (p <
0.001) than the mean RMAD value of 18.64 between the
clutter-free and cluttered regions. The SVD filter, on the other
hand, could not reduce the difference between the clutter-free
and cluttered regions.

IV. DISCUSSION

The obtained results confirm the suitability of 3D U-Net
for spatiotemporal clutter rejection and show its advantage
over the SVD filtering approach. The efficient performance
of 3D U-Net can be explained by considering the following
characteristics of this deep neural network.

First, unlike SVD that filters a small ROI, 3D U-Net takes
both the local and global characteristics of the 2D image
sequences into account to reject the clutter patterns by taking
advantage of hierarchical representation of the images through
using convolutional and pooling layers. As such, the clutter
location and its relation to other regions in the myocardium
can help the network to reconstruct the artifactual regions and
to predict the patterns of the clutter-free pixels that should be
substituted in place of the cluttered ones. This can be seen
by considering the clutter-filtered regions in Fig. 2 generated
by 3D U-net where the reconstructed pixels properly represent
the clutter-free regions.

Second, 3D U-Net learns a large set of kernels for encoding
spatiotemporal features of the 2D sequences and uses a non-
linear combination of them in order to filter the cluttered
regions. It is, thus, more efficient than SVD in decomposing
the signal of interest and clutter components in space and time
given that SVD linearly combines a limited set of bases for this
purpose. In Fig. 2, the bright regions in the images filtered by
SVD are bigger than the superimposed clutter patterns. This
resulted in a mean RMAD value for SVD that is larger than
that of the clutter-free and cluttered frames (Table I) which can
be explained by the failure of SVD in properly decomposing
the slow-moving clutter components in the time domain.

Although 3D U-Net yielded promising clutter rejection
results, its generalization performance is heavily dependent
on the diversity of the clutter patterns that it learned during
the training phase. Hereto, a major future step is to simulate
different types of clutter artifacts that represent real-world
scenarios in order to train a capable deep clutter filtering
tool. Training the 3D network with sequences of different
echocardiographic views and evaluating the performance of
the network on in-vivo data are other important future works
that could be accomplished.

V. CONCLUSIONS

In this study, we have proposed to use a 3D deep CNN
called 3D U-Net for the spatiotemporal clutter filtering of
2D echocardiographic B-mode sequences. The network was
trained with simulated slow-moving clutter artifacts and was
designed such that it was able to learn the temporal behavior
of the clutter patterns throughout the whole cardiac cycle. The
performance of the deep network in rejecting clutter patterns
both in space and time was promising and highlights its

advantage over the classical learning-based filtering methods
like SVD. The clinical implication of these results is significant
given that efficient filtering of the echocardiographic clutter
artifacts could dramatically increase the diagnostic value of
this imaging modality.
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