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Abstract—Diverging wave (DW) ultrasound imaging has be-
come a very promising methodology for ultrafast cardiovascular
imaging due to its high temporal resolution. However, if they are
limited in number, DW transmits alter image quality compared
with classical focused schemes. A conventional reconstruction
approach consists in summing successive RF images coherently,
at the expense of the frame rate. To deal with this limitation,
we propose in this work a convolutional neural network (CNN)
architecture for high-quality reconstruction of DW ultrasound
images using a small number of transmissions. We experimentally
demonstrate that the proposed method produces high-quality im-
ages using only three DWs, yielding an image quality equivalent
to the one obtained with standard compounding of 31 DWs in
terms of contrast and resolution.

I. INTRODUCTION

Diverging wave imaging has drawn much interest in the
research community due to the high temporal resolution. Com-
pared with the conventional focused scheme where several
narrow sectors of the entire image are reconstructed with
successive transmissions, DW imaging can image the whole
field of view with single diverging wave transmission [1], [2].
Therefore, DW imaging achieves a high frame-rate, facilitating
capturing transient biological phenomena, e.g., cardiac motion
[3]. However, images obtained from single DW emission suffer
a poor image quality due to the unfocused beam. A standard
reconstruction method performs coherent compounding [2]
of multiple RF images from successive transmissions, at the
expense of the frame rate. A trade-off needs to be made
between image quality and frame rate since compounding of
more beams produces images of higher quality but increases
the acquisition time. Therefore, to achieve a high image quality
while maintaining the frame rate of DW imaging is of great
research interest.

Recently, deep learning approaches have achieved signifi-
cant performance in various image reconstruction problems.
Inspired by the tremendous success of deep learning, our
group previously proposed to adopt convolutional neural works
to reconstruct high-quality images using 3 plane wave (PW)
transmissions [4]. Different from PW imaging, the image
properties of DW imaging varies along image depth. We
have indeed experimentally observed that directly applying a
conventional CNN architecture to DW image reconstruction
cannot produce a satisfactory performance. To deal with the
spatially varying properties of DW images along depth, we
adopted in this work an inception module [5] composed of the
concatenation of multi-scale convolutional kernels. Incorpo-

rating the inception module aims at capturing different image
features with multi-scale receptive fields.

II. METHODS

Let x be the low-quality RF beamformed images of size
m × w × h, where m is the number of DW acquisitions, w
is the number of scan lines, and h is the length of each RF
signal. Our work aims at reconstructing the high-quality image
y of dimension w × h from input x. Standard compounding
consists in summing all m DWs to obtain the high-quality
image. Considering that there may be useful information which
is not exploited by standard compounding, we employ a CNN
with trainable parameters θ to learn the optimal mapping f(·)
of x→ y.

The proposed network is a 2-D fully convolutional network
with five hidden layers, whose architecture is described in
Table I. Two types of basic building modules, including regular
convolutional and inception module, are used to construct
hidden layers. The inception module employed in our network
is composed of four parallel paths. Each path performs convo-
lution with different kernel size to the same input. The outputs
of each path are stacked along the channel dimension as the
output of the inception module. As the image properties of DW
imaging vary along image depth, the multi-size convolution
kernels contribute to extract different image features from
multiple receptive field sizes. The activation function used in
our network is a four-pieces maxout unit [6]. Maxout units are
piecewise-linear convex functions, and a maxout network with
more than two maxout units can approximate many general
activation functions [7]. We exclude the pooling operation
used in most popular CNN architectures to produce the feature
maps with the same dimension. This guarantees that the spatial
information is preserved at the same scale throughout the
network, which may be beneficial for maintaining phase in
RF signals.

III. EXPERIMENT

A. Data Set Acquisition

A Verasonics Vantage 256 equipped with ALT P4-2 probe
was used to perform the data set acquisition. The samples were
acquired by continuously moving the probe on the surface
of the imaged objects, at an imaging rate of 50 frames/s
and a packet size of 250 images. Each sample was acquired
using 31 DWs with angles ranging between ±30◦, with an
incremental step of 2◦. For each DW transmission, the received
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TABLE I
NETWORK ARCHITECTURE

block type
feature size kernel size padding number of

activation
channel × height × width height × width height × width kernels

inputs m× h× w - - - -
convolution 64× h× w 9× 3 4× 1 256 maxout 4
convolution 32× h× w 17× 5 8× 2 128 maxout 4
convolution 16× h× w 33× 9 16× 4 64 maxout 4

inception 8× h× w

41× 11 20× 5 8 maxout 4
49× 13 24× 6 8 maxout 4
57× 15 28× 7 8 maxout 4
65× 17 32× 8 8 maxout 4

convolution 1× h× w 1× 1 - 4 maxout 4

Fig. 1. B-mode images obtained using our network (middle column) and standard compounding of 3 DWs (left column) and 31 DWs (right column). Top
to bottom: in-vivo tissues from the quadriceps femoris muscle; in-vitro tissues from the Gammex phantom; in-vitro tissues from the CIRS phantom.

RF signals were sampled at 11.9 MHz and beamformed with
the conventional delay and sum method. Each RF beamformed
image is of dimension 512 × 256, covering a polar region
of size 12cm×90◦. The input images x were composed of a

small subset of m = 3 DWs (−30◦, 0◦, and 30◦), while the
reference images y were the standard compounding of all n =
31 DWs. A total of 7000 samples were used in the experiment,
and each was made up of low-quality images x and the
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high-quality corresponding y. Specifically, 1500 samples were
acquired from in-vivo tissues (quadriceps femoris muscle,
phalanges of fingers, and liver region), and 5500 acquisitions
were performed on in-vitro phantoms. From the 7000 samples
of the entire set, 6000 samples were randomly selected as the
training set. The remaining 1000 samples were used as the
testing set for evaluation.

B. Training implementation

From the 6000 samples of the training set, 5000 samples
were used for training the network, and the remaining 1000
samples were used as an independent validation set. In the
training phase, the network weights were initialized with the
Xavier initializer [8]. The Mean Squared Error (MSE) loss was
minimized using mini-batch gradient descent with the Adam
optimizer [9], and the batch size was set as 10. The initial
learning rate was set as 1×10−4 and an early stopping strategy
was used to adjust the learning rate. The learning rate was
halved if there had been no decrease in the loss for 20 epochs,
and 40 epochs without loss reduction would end the training.
The training was performed using Pytorch [10] library on a
NVIDIA Tesla V100 GPU with 32 Gb of memory, resulting
in training times of about two days.

IV. RESULTS

In the testing phase, the images reconstructed by our net-
work were compared to those obtained from the compounding
of 3 DWs and 31 DWs. As depicted in Fig. 1, the images
reconstructed by our network using only three DWs (middle
column) are visually very close to the reference (right column).
The contrast and resolution are much improved compared with
the images from the standard compounding of the same three
DWs (left column). We use two evaluation indices for the
quantitative evaluation of image quality: contrast ratio (CR)
and the lateral resolution (LR), measured on test samples
acquired from the Gammex phantom and CIRS phantom,
respectively. As shown in Fig. 2 and Fig. 3, the CR and LR
reached by our network is compared to those obtained from
the standard compounding of an increasing number of DWs.
The CR and LR of standard compounding (blue curves) tend
to stabilize to an optimal value using more DWs. While using
only three DWs, our network (orange lines) produced a CR
equivalent to that of the standard compounding of about 23
DWs and an LR equivalent or even superior to the standard
compounding of 31 DWs.

V. CONCLUSION

A deep-learning-based method is presented in this work for
the reconstruction of diverging wave imaging. The proposed
approach aims at learning a compounding operator to recon-
struct high-quality images using a small number of DWs. The
experiments are performed using a large number in vitro and in
vivo samples. The experimental results demonstrated the effec-
tiveness of the proposed method, producing an image quality
equivalent to the one obtained with standard compounding of
31DWs in terms of contrast and resolution.

Fig. 2. CR reached by our network with three DWs (−30◦, 0◦, and 30◦),
compared to the standard compounding of an increasing number of DWs. CR
is measured on two anechoic regions (the near field at 40mm depth and the
far field at 120mm depth) of a B-mode image obtained from the Gammex
phantom.

Fig. 3. LR reached by our network with three DWs (−30◦, 0◦, and 30◦),
compared to the standard compounding of an increasing number of DWs. LR
is measured on 0.1 mm Nylon monofilaments (the near field at 20mm and
40 mm depth, the middle field at 60mm and 80mm depth, and the far field
at 90mm and 100mm depth) of a B-mode image obtained from the CIRS
phantom.
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