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Abstract—This work combined neural network and traditional
minimum variance (MV) beamforming to produce ultrasound
images with high resolution, high contrast and relatively high
speckle signal-to-noise ratio (SNR). The received channel data are
in time domain and the neural network is a deep convolutional
neural network. The network is responsible for suppressing off-
axis scattering signals and the apodization weights of MV beam-
forming guarantee the resolution performance. Experimental
results showed that the proposed method significantly improved
the contrast performance of MV beamforming while reserving
high lateral resolution and satisfactory speckle SNR.

Index Terms—high contrast, minimum variance beamforming,
convolutional neural network, off-axis suppressing, ultrasound
imaging

I. INTRODUCTION

In medical ultrasound B-mode imaging, delay-and-sum
(DAS) beamforming [1] is the most widely used beamforming
technique due to its real-time performance. It consists of two
steps, the first of which is applying time delays to the received
channel data to dynamically focus to imaging pixels and the
second of which is summing the channel measurements to
determine the pixel amplitude. The resolution performance
of DAS beamforming is poor. Hence, minimum variance
(MV) beamforming was proposed to improve the quality of
ultrasound images [2]. MV beamforming complies to the
framework of DAS beamforming. However, MV calculates
the channel apodization weights and then applies weight-
ing summation to the delayed channel data. The resolution
performance of MV is impressive but the contrast and the
robustness needs improving. Several techniques have been
proposed to improve the contrast and the robustness of MV.
Spatial smoothing devides the receiving aperture into sub-
apertures, respectively calculates the covariance matrix of each
sub-aperture and then averages all the covariance matrices. It
enhances the estimation accuracy of the covariance matrix.
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Diagonal loading adds a proportion of Gaussian white noise
to the estimated covariance matrix. These two techniques
improve the robustness of MV.

In recent years, the combination of neural network and
ultrasound beamforming has been a research hotspot. In 2018,
Ye et al. utilized deep neural network to interpolate the missing
channel data in the sub-sample channel data and then applied
DAS beamforming to the interpolated channel data [3]. The
neural network successfully learned the pattern of redundancy
in channel data and achieved comparable performance for
the full-sample case. Luchies and Byram designed a neural
network beamformer to suppress off-axis scattering signals [4].
They first converted channel data into frequency domain using
short-time Fourier transform and then operated the frequency
domain channel data with a five-layer fully-connected neural
network. Their method achieved much higher contrast than
DAS beamformer and simutaneously reserved high speckle
signal-to-noise(SNR) ratio. In 2019, Dahl et al. utilized con-
volutional neural network to significantly reduce the speckle
and thus achieved high speckle SNR and high contrast [5].

In this paper, we proposed a high contrast high speckle
signal-to-noise ratio minimum variance beamforming method
combined with neural network. The neural network was
trained to suppress the sidelobe and the apodization weights
of MV guaranteed the resolution performance. The neural
network operated delayed channel data in time domain, getting
rid of the annoying Fourier transform which is necessary in [4].
The method we proposed significantly improved the contrast
of images while maintaining the resolution performance of
traditional MV and reserving the speckle SNR.

The rest of this paper is organized as followed. Section II
introduces the detail of our method, including the network
training and the combination of neural network and traditional
MV. The experimental setup and result analysis will be pre-
sented in Section III. Finally, Section IV concludes the paper.
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Fig. 1: Acceptance region and rejection region.

II. METHOD

A. Neural Network Training

In order to train the neural network to distinguish off-axis
scattering signals and on-axis scattering signals, a dataset with
these two kinds of signals must be created. We use Field II
to simulate the ultrasound channel data [6]. In the simulation
phantom, the acceptance region and the rejection region are
defined as shown in Fig. 1. The acceptance region is defined
accrording to the beam width at the focal point. The width of
the annular sector is 2 × wavelength. For the training dataset,
15,000 scatters are randomly positioned in the acceptance
region and 15,000 scatters are randomly positioned in the
rejection region. For the validation dataset, 1,500 scatters
are randomly positioned in the acceptance region and 1,500
scatters are randomly positioned in the rejection region. For
each scatter, a focused beam whose axis is in the middle of
the aperture insonifies the imaging phantom and then the echo
signals are recorded. For scatters in the acceptance region, the
echo signals are on-axis signals so the output is exactly the
same as input. But for scatters in the rejection region, the echo
signals are off-axis signals so the output is zeros.

The network employed in this paper is a fully convolutional
neural network, as shown in Fig. 2 . We expect that a con-
volutional network can capture the pattern of off-axis signals
in time domain. Different from [4], no Fourier transform is
executed so a five-layer fully-connected network may not
be capable of suppressing off-axis signals. Our network is
composed of 28 convolution layers and each layer consists
of a 3×3 convolution, batch normalization and ReLU except
for the last layer, which merely contains a 1×1 convolution
operation. The learning rate is set to be 1.0 × 10−5 and the
decay is 1.0×10−7. We employ an early-stopping strategy that
is when the validation loss does not improve after 20 epochs,
the training will be terminated.
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Fig. 2: The network architecture. A block is consisted of two
sets of 3×3 convolution, batch normalization and ReLU.

B. MV Beamforming with Neural Network

In focused ultrasound imaging, channel data are acquired
scanline by scanline as the active aperture slides across the
transducer surface. After applying time delays to the channel
data, we can get a datacube of shape P × M × SL where
SL represents number of scanlines, M represents number of
receiving channels and P represents number of imaging pixels
of each scanline. The delayed channel data of each scanline
are then used to compute apodization weights of all imaging
pixels.

In our method, spatial smoothing and diagonal loading are
utilized to guarantee the robustness of MV. A full aperture
with M channels is divided into M − L + 1 sub-apertures
with L channels. The channel data of each sub-aperture xi, i =
1, 2, ...,M − L + 1 contain signals from ith channel to (i +
L − 1)th channel. Then, the data covariance matrix Rcov is
calculated accroding to (1):

Rcov =
1

M − L+ 1

M−L+1∑
i=1

xi · xH
i . (1)

Diagonal loading is subsequently executed. It adds a certain
proportion of Gaussian white noise to covariance matrix Rcov ,
as illustrated in (2):

Rcov = Rcov + σ · trace(Rcov · I), (2)

where I is a unit matrix and σ is the diagonal loading factor
which is 1/(100L). The apodization weight w is a vector with
length L, calculated as (3):

w =
R−1

cov · a
aH ·R−1

cov · a
, (3)

where a is a vector of ones.
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Fig. 3: The flowchart of our method.
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Fig. 4: The training results.

The delayed channel data of each scanline are then pro-
cessed by the trained neural network to suppress off-axis
scattering signals. Then, the pixel amplitude is computed by
multiplying apodization weight w with every sub-aperture data
processed by network x′

i, i = 1, 2, ...,M −L+1 and then the
results are averaged:

v =
1

M − L+ 1

M−L+1∑
i=1

wH · x′
i. (4)

The overall procedure is illustrated in Fig. 3. Now beam-
forming is completed and after post-processing procedure such
as envelop detecting and log compressing, an ultrasound image
is produced.

III. EXPERIMENTS

A. Neural Network Training

The neural network was trained on an NVIDIA GeForce
RTX 2080 Ti GPU. The training loss curve and the validation
loss curve were plotted in Fig. 4. As shown, the training
process ended at the 31th epoch and did not suffer from
overfitting. The optimal validation loss was 1.38 achieved at
the 11th epoch.

(a) Traditional MV

(b) CNNMV

Fig. 5: Point target images (60dB dynamic range) of traditional
MV and the proposed CNNMV.

Fig. 6: Point spread function comparison of Traditional MV
and the proposed CNNMV.

B. Imaging Scenario Simulation

We first tested the network performance on point target sim-
ulation. Fig. 5 showed point target images of traditional MV
and the proposed CNNMV. It was clear that the sidelobe of the
point target was largely suppressed in image of CNNMV. From
point spread function comparison in Fig. 6, we could know
that the lateral resolution performance of CNNMV suffered a
little yet the sidelobe was greatly suppressed. This indicated
that the network successfully learned the pattern of off-axis
scattering and suppressed off-axis signals while reserving on-
axis signals.

In cyst simulation, we quantified the imaging results using
contrast (CR) and speckle signal-to-noise ratio (SNR). The
cyst was centered in the focal depth that was 25mm and the
radius of the cyst was 3mm. The phantom was filled with
scatters with density of 100 scatters per cubic millimeter and
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Fig. 7: The illustration of the calculation of contrast and
speckle SNR.

TABLE I: Contrast and SNR Comparison Results

Metrics Traditional MV CNNMV
Contrast 0.5156 0.6607

Speckle SNR 1.1444 1.0858

the amplitudes of scatters within the cyst were set to be zeros.
As shown in Fig. 7, the region of interest (ROI) of cyst was
selected as a circle with a radius of 0.8 times the cyst radius.
The ROI of background was selected as an annular with an
inner radius of 1.1 times the cyst radius and an outer radius of
1.5 times the cyst radius. We calculated the mean pixel values
of the cyst and the background and then computed the contrast
value according to (5):

CR =
Mout −Min

Mout
, (5)

where Mout denotes mean pixel value of the background
and Min denotes mean pixel value of the cyst. Two circle
background regions with the same area as the cyst were
selected on the left side and the right side of the cyst. Then the
speckle SNRs of these two regions were calculated according
to (6), respectively:

SNR =
µbackground

σbackground
, (6)

where µbackground denotes the mean value of uncompressed
envelop signals and σbackground denotes the standard devi-
ation value of uncompressed envelop signals in the selected
background region. Finally, the SNRs of the left circle and the
right circle were averaged to get the desired SNR value.

Cyst images of traditional MV and the proposed CNNMV
were shown in Fig. 8. It was observed that the cyst of CNNMV
was more darker, indicating that signals within the cyst region
were suppressed. As shown in Table I, the CR value of
traditional MV was 0.5156 while the CR value of CNNMV
was 0.6607. The SNR of CNNMV was 1.0858, which was
little lower than that of traditional MV, which was 1.1444. This
phenomenon indicated that reconstrcuting signals was harder
to learn than suppressing signals.

IV. CONCLUSION

In this work, we explored suppressing off-axis scattering
signals in channel data in time domain using convolutional

(a) Traditional MV

(b) CNNMV

Fig. 8: Cyst images (60dB dynamic range) of traditional MV
and the proposed CNNMV.

neural network. Experimental results showed that without any
Fourier transform, convolutional neural network was capable
of capturing the pattern of off-axis scattering in time domain.
By combining neural network and traditional MV beamform-
ing, the produced ultrasound images can be of high quality
in terms of lateral resolution, contrast and speckle SNR. In
future work, SNR should be further improved by enlarging the
amount of scatters in the training dataset. Also, using neural
network to suppress other sources of image degradation such
as reverberation deserves further researching.
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