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Abstract—Magnetomotive Ultrasound Imaging relies on esti-
mates of the harmonic motion in tissue from ultrasound data. It
was shown that data containing harmonic motion are different
in spectral content from those containing uniform motion as in
classical Doppler methods. However, common computationally
efficient phase-based motion estimators are similar to Doppler
processing. Simulation data indicate that even in case of noise-
free data, the phase-based estimators exhibit a significant error
in a typical magnetomotive ultrasound scenario. An improvement
of the estimator, measured as a reduction of over 50 % in mean
absolute error, was achieved in the simulation scenario by pre-
filtering radio frequency data components not associated with
motion and reducing the bandwidth of radio frequency data or
by averaging motion estimates obtained in different frequency
bands. Thereby, it was shown that a substantial improvement of
the estimators is possible without increasing the computational
effort significantly. However, it was also pointed out that further
improvement in case of small harmonic displacements ratio
seems possible only with different estimators derived from more
sophisticated signal models.

Index Terms—Doppler processing, harmonic motion, magnetic
nanoparticles, magnetomotive ultrasound imaging, motion esti-
mation, signal processing.

I. INTRODUCTION

In magnetomotive (MM) ultrasound imaging (US), magnetic

nanoparticles (MNP) are visualized by motion estimation in

US data. Motion is induced by a magnetic field that exerts

a force on the MNPs which are embedded in tissue. If the

excitation is a sinusoidally varying magnetic field, the force

is typically also harmonic which leads to a harmonic tissue

motion at the known frequency of magnetic excitation. It is

desired to estimate amplitude and phase of the motion spatially

resolved since from this motion map the MNP distribution or

prospectively MNP concentration or mechanical tissue prop-

erties can be reconstructed. Hence, by administering MNPs

to the respective imaging region, MMUS offers the potential

for molecular imaging and to obtain different parameters that

are not accessible in standard US. However, the estimation of

small displacements between 0.01–100 µm is challenging.
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With regard to signal processing, two characteristics are typ-

ical for MMUS and harmonic motion estimation in ultrasonic

data: First, the motion is harmonic at a known frequency,

which implies that the tissue is in its original configuration

after a period of magnetic excitation, if no superimposed

interfering motion was present. This distinguishes MMUS

from Doppler methods that perform speckle tracking for

the visualization of flow. Second, motion must be usually

estimated on a speckle pattern, as the tiny MNPs are well

below the resolution limit of US.

Magnetomotive ultrasound imaging was introduced in 2006

[1] and performed with standard Doppler modes that are

available on clinical scanners. Surprisingly, these can indicate

merely the presence of vibrating MNPs. Previously, a different

technique for optical coherence tomography (OCT) was pro-

posed [2]. There, amplitude variations in the typical B-mode

data were used for motion detection. In OCT [3], it was early

made use of the phase of the complex in-phase and quadrature

(IQ)-data for MM motion estimation. Later in MMUS, a cross-

correlation tracking approach has been implemented [4]. The

amplitude variation of the RF data was used to improve the

phase-based estimation [5]. Amplitude and phase of the motion

in MMUS was calculated in [6] based on the phase of the IQ-

data and used to suppress motion outside the MNP loaded

region. This is considered to be the standard method currently

used in MMUS. Also in OCT, this method was adapted [7].

Hence, the majority of publications in the field of MMUS

work with the relatively simple phase-based motion estimation

technique, with the advantage of being real-time capable [8].

To further enhance the sensitivity of MMUS, e. g., to reduce

the tracer concentration or magnetic field strength, a prepro-

cessor was suggested in [9]. We have previously implemented

a time-domain motion estimator using a Bayesian framework

[10] and compared it to a phase-based method following

[6]. The results showed that better motion estimations can

be achieved than with the conventional phase-based method.

However, time-domain estimators are often computationally

more demanding than the currently used phase-based variants.

Therefore, the further development of phase-based methods

is of particular interest. Here, an improvement of the phase-
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based estimators is approached by formulating a signal model

of US data with harmonic motion. Deficiencies of the conven-

tional estimator are improved by preprocessing the ultrasound

data before estimation or averaging estimates. A significant

improvement of a phase-based estimator with minimal modi-

fications is thereby demonstrated in a simulation scenario.

II. METHODS

A. Ultrasound simulation

Ultrasound radio frequency (RF) data of a single A-scan

was generated with the Field II US simulation toolbox [11].

A transducer with center frequency f0 = 8MHz and ap-

prox. 100% bandwidth with a Gaussian shaped power density

spectrum was used. The simulation was performed at a sam-

pling frequency of 128MHz and RF data were downsampled

to fs = 4f0 which is a typical sampling frequency of an US

system. The transducer aperture consisted of 67 elements of

170 µm width separated by a 30 µm kerf. It was focused to

a depth of zfoc = 20mm on transmit. On receive, a dynamic

focusing was used to achieve a homogeneous point-spread-

function in the field of view. The RF data generated represent

an axial line of a B-mode image.

As a tissue model, a uniform distribution of 20 scatterers per

resolution was created. The resolution cell was calculated as a

volume of 2λ3 via the wavelength at center frequency λ=c/f0
and with the background speed of sound c=1540m s−1. The

tissue phantom is centered around the focus of the aperture

and has a dimension of 20mm (axial) × 4mm (lateral) ×
750 µm (elevational), the latter being 1/10 of the respective

transducer dimension.

The simulation of RF data was repeated with a frame

rate of fF = 2kHz while all scatterers are axially moved

with a motion amplitude distribution with a Gaussian profile,

sinusoidally varying over the slow time t. This displacement

profile with a peak displacement of ξ0=5 µm is

ξ(z, t) = ξ0 exp

(
−
(z − z0)

2

2 σ2
z

)

︸ ︷︷ ︸
ξ(z)

sin(ωM t)︸ ︷︷ ︸
ξ(t)

, (1)

and with σz = 5/3mm, the motion frequency fM = 20Hz
and ωM=2π fM. Simulations were performed for one motion

period, i. e., 100 frames. The RF data for a measurement of 1 s
were composed from this. Uncorrelated white Gaussian noise

was added to the RF data to get different signal-to-noise ratios

(SNRs) with the powers calculated over the entire RF dataset.

B. Signal model

The RF signal is a function of the fast time tf , correspond-

ing to the axial dimension, which is here expressed as the

space variable z = c tf/2 , and of the slow time t as in (1).

The velocity of motion in MMUS is at least three orders of

magnitude slower than the speed of sound even if an unrealistic

displacement of 500 µm at a motion frequency of 500Hz is

considered. This motivates to neglect spectral distortions due

to Doppler effects and view a single scan over the fast time

as a snapshot of the tissue configuration.

The RF data or A-scan at reference slow time t0=0 is

eref(z) = st(z) ∗ uref(z) . (2)

It is generated by convolution of the physical, i. e., band-

pass, high-frequency ultrasound pulse st(z) with the impulse

response of the tissue uref(z) in mechanical reference config-

uration. The latter is a white process when speckle is fully

developed. Hence, the A-scan is a band-pass signal around

f0, i. e., the Fourier-transform with respect to fast time z is

Eref(kz) = Fz {eref(z)} = St(kz)Uref(kz) (3)

and contains all energy in the passband of the transducer.

Motion relative to the reference configuration

u(z, t) = uref(g(z, t)) , (4)

is introduced with g(z, t) that is in MMUS typically

g(z, t) = z − ξ(z) sin(ωM t+ ϕM(z)) . (5)

Signal processing for MMUS can hence be defined as estimat-

ing ξ(z) and ϕM(z) from noisy A-scan observations

e(z, t) = st(z) ∗ u(z, t) + n(z, t) , (6)

with the uncorrelated white Gaussian noise process n(z, t).

C. Conventional phase-based motion estimator

Although the signal model (6) is easy to formulate, it is

difficult to derive an estimator from it. Therefore, the standard

approach, here according to the concept of [6], is to generate

the IQ signal by demodulation with the center frequency of

the ultrasonic pulse and filtering with the low-pass filter h(z)

eIQ(z, t) =
(
e(z, t) e j 4π

λ
z
)
∗ h(z) . (7)

Its phase is defined as the argument of the IQ data

Φ(z, t) = arg {eIQ(z, t)} , (8)

where unwrapping must be performed if necessary. Thereof,

the complex motion estimate is obtained by Fourier analysis

of the in-pixel IQ data phase

ξ̂(z) =
λ

2π
Ft {Φ(z, t)}

∣∣∣∣
ωM

, (9)

that contains the amplitude and phase of the motion.

D. Model analysis

A derivation of the estimation scheme is not possible from

the signal model (6) without simplifications [8]. For further

analysis, the effect of motion in the frequency domain is

investigated. The Fourier-transform with respect to fast and

slow time is denoted as the complex Doppler-spectrum

U(kz , ω) =

∞∫

−∞

∞∫

−∞

uref(g(z, t)) e
−jkzz e−jωt dz dt (10)

=
1

2π

∞∫

−∞

Uref(lz)P (kz , lz, ω) dlz . (11)
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It arises from a linear operation in the frequency domain on

the Fourier-transform of the reference configuration Uref(lz)
with a function describing the spread of energy due to motion

P (kz , lz, ω) = Ft

{
Fz

{
e jlz g(z,t)

}}
.

This function simplifies if the motion is spatially homoge-

neous, i. e., ξ(z)=const. and of the same phase, e. g., ϕM=0

P (kz , lz, ω) = 2π δ(kz − lz)Ft

{
e jkz ξ0 sin(ωM t)

}
(12)

⇒ U(kz , ω) = Uref(kz) P̃ (kz , ω) (13)

with the specific complex Doppler-spectrum

P̃ (kz, ω) = Ft

{
e jkz ξ0 sin(ωM t)

}
(14)

= J0(kz ξ0) δ(ω)

+

∞∑

n=1

Jn(kz ξ0) [δ(ω − nωM) + δ(ω + nωM)] ,

and with Jn(·) as the Bessel function of the first kind of

order n. Hence, the Fourier-transform of the A-scan with

homogeneous harmonic motion, compatible to derivations of

the conventional estimator, is

E(kz , ω) = St(kz)Uref(kz) P̃ (kz , ω) +N(kz, ω) . (15)

The observation that a harmonic motion generates higher

harmonics in the Doppler-Spectrum has early been made and

used by [12]–[15] and novel Doppler estimators have been

developed based on the Doppler-spectrum for linear motion in

[16], [17]. There, the Doppler-spectrum of linear and spatially

homogeneous motion is calculated as

P̃lin(kz , ω) = 2π δ(kz − v ω) (16)

with v being the flow velocity. The comparison of (14) with

(16) reveals the different characteristic between linear and

harmonic motion: Contrary to classical Doppler [16], the

harmonic motion leads to a spread of the energy of every

spatial frequency kz to discrete slow-time frequencies nωM

in the Doppler-spectrum.

E. Resulting findings and algorithm improvements

Due to the energy spread over the entire spectrum, sampling

in slow-time must be fast enough (fF ≫ 2 fM ) to consider the

sampling theorem sufficiently fulfilled [18]. However, as Jn(·)
rapidly decreases with n, the energy is concentrated at the

lower frequencies. More important, almost no motion-related

energy is at intermediate frequencies Ê(kz , ω 6= nωM) ≈
N(kz , ω 6= nωM), with n ∈ N. Hence, this can be used

for determination of SNR and for a prefilter (PF) setting

Ê(kz , ω 6=nωM)=0 to suppress noise and interfering motion

not associated with the motion at ωM to be detected.

From classical Doppler theory it is known that phase-

based motion estimators perform best on continuous wave,

i.e., narrow-band, signals to achieve the lowest variance of the

estimate. Here, it can be verified that the conventional motion

estimator perfectly performs in case of ideal impulse excitation
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Fig. 1. Mean absolute error relative to the peak displacement of 5 µm for
conventional and modified estimators using B=10 bands with and without
a prefilter (PF).

of a moving point scatterer, i. e., u(z, t)=δ(g(z, t))∧st=δ(t).
However, realistic motion is spatially smooth and is expected

to approximately match the case of (15). This motivates to

perform the motion estimation in a narrow band by demod-

ulating to a frequency within the transducer bandwidth and

filtering with a suitable low-pass filter h(t) with a passband

significantly smaller than the transducer bandwidth. To exploit

all spectral energy of a typical wide-band ultrasonic pulse,

multiple estimates obtained inside the transducer bandwidth

can be combined, e. g., by averaging multiple estimates,

thereby suppressing uncorrelated noise.

Motion estimation in different frequency bands is therefore

performed with modifications: The first is phase-based motion

estimation on narrow-band data, by reducing the RF data

bandwidth with h(t) by a factor of B. The second is demod-

ulation to B equally spaced frequencies and performing B
multi-band estimations on a reduced bandwidth of B−1 ·100%,

such that the full bandwidth of the RF data is exploited.

These modifications are tested with and without the PF. The

error metric is the mean absolute error (MAE) between the

estimate and the actual motion calculated over the motion

profile between 12–28mm. The SNR is varied between 0–

80 dB. To investigate the influence of the bandwidth parameter

B, it was varied between 1 and 10.

III. RESULTS

Fig. 1 shows the MAE over SNR which was calculated

on a single A-scan realization but averaged over 100 different

realizations of additive white Gaussian noise. At an SNR better

than 60dB, the estimate does not improve further, so that it

s biased estimator for a fixed scatterer realization. Towards

lower SNR, the estimates on narrow-band data outperform

the conventional estimate significantly and preprocessing is

particularly advantageous for low SNR. However, with good
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Fig. 2. Mean absolute error relative to the conventional estimator MAE for an
SNR of 60dB (dashed lines, conventional MAE 302 nm) and 30 dB (solid
lines, conventional MAE 1.13 µm).

SNR, the multi-band estimation is advantageous and a PF has

not a significant influence.

For a single realization of the scatterer distribution and a

single realization of the noise, the reduction of MAE compared

to the conventional estimate is depicted in Fig. 2 for good

(60 dB) and moderate (30 dB) SNR. Almost all modified

estimates outperform the conventional estimate. The MAE

reduction is larger for low SNR. Additionally, for this scenario

the optimum estimator is the multi-band processing with a PF

using B= 4–8 Bands.

IV. DISCUSSION & CONCLUSION

A theoretical analysis has shown that the RF data of har-

monically vibrating tissue exhibit different characteristics than

in typical Doppler applications. It was deduced that motion

estimation should be performed on narrow-band data, which

was not discussed so far. The results indicate that the data

that were not processed in a narrow band estimate can still be

used to improve the estimate by averaging from different band

ranges. Thus, a significant increase in estimator performance

can be achieved with little or no additional computational

effort. A prefilter has shown to be suitable for suppressing

interference noise. The ability to suppress interfering motion

can prospectively be analyzed. An analysis of all RF data

and motion related parameters is necessary to fully exploit

the potential of the presented methods.

The simulation data also show that the phase-based estima-

tion has a significant residual error independent of the SNR.

Therefore, further improvements may only be possible by

deriving estimators on a more sophisticated model of motion

in RF data. This is especially important for MMUS, where

particularly small displacements are to be estimated.
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