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Abstract—Prostate cancer diagnosis using standard transrectal
ultrasound (TRUS) and systematic biopsy is challenging. To
improve the performance of TRUS imaging, we combined it
with acoustic radiation force impulse (ARFI) imaging and shear
wave elasticity imaging (SWEI) to enhance lesion contrast into
a multiparametric ultrasound (mpUS) synthesized image using a
linear support vector machine (SVM). The SVM was trained
on one subset of patients (N=15) and applied to a second
subset (N=15) imaged with a different transducer. mpUS imaging
identified 79% of clinically significant PCa in the second cohort
with a PPV of 95%.

I. INTRODUCTION & BACKGROUND

Prostate cancer (PCa) is the second leading cause of cancer
related death and the primary cause of new cancer diagnoses
for males living in the United States with an estimated
31,620 deaths and 174,650 newly diagnosed cases in 2019
[1]. PCa is typically diagnosed after a suspicious digital rectal
exam (DRE) or elevated prostate-specific antigen (PSA) test
via the gold standard transrectal ultrasound (TRUS) guided
biopsy. TRUS guided biopsy consists of 10-12 biopsy cores
acquired systematically throughout the prostate determined
by the prostate anatomy, without any targeting of apparent
cancerous regions [2]. The lack of targeting involved in the
systematic approach to TRUS biopsy along with the sensitivity
and specificity issues related to TRUS imaging leads to only
18-36% of men suspected of having PCa being diagnosed after
their first biopsy visit [3].

To combat the limitations of standard TRUS, additional 3-D
imaging methods with increased PCa contrast can be used to
enhance lesion detectability. Acoustic radiation force impulse
(ARFI) imaging and shear wave elasticity imaging (SWEI) are
both elasticity-based techniques for identifying PCa which rely
on acoustic radiation force (ARF) as the mechanical excitation
for elasticity imaging. ARFI is an actively researched topic in
the prostate cancer diagnosis field with work demonstrating its
ability to identify 71% of clinically significant lesions present
with high specificity toward clinically significant disease [4]. A
drawback of both ARFI and other strain elastography methods
are that they only provide a relative measure of tissue stiffness.

SWEI, however, provides a quantitative estimate of the tissue
stiffness which may be relevant in the clinical staging of PCa
[5]–[8].

In this work, we use a classifier to synthesize a multi-
parametric ultrasound (mpUS) image volume which combines
information from ARFI, SWEI, and standard TRUS and assess
the combination’s ability to identify PCa in a population of 15
patients with biopsy-confirmed PCa.

II. METHODS

A. Prostate Volume Acquisition

Ultrasonic data were acquired in 30 patients with biopsy-
confirmed PCa immediately preceding radical prostatectomy
using a modified Siemens SC2000 (Siemens Medical Solu-
tions, Mountain View, CA) and an Acuson ER7B or custom
designed Siemens 12L4 transrectal ultrasound probe. The
scanner and side-fire endorectal probe were paired with a
modified CIVCO Micro-Touch stabilizer and rotation stage
(CIVCO Medical Solutions, Kalona, IA USA) to acquire
sagittal images of the prostate with a 1-1.5 degree angular
spacing. The rotation stage was equipped with a stepper
motor and custom optical angular feedback to rotate to the
desired angle and ensure accurate measurement of the angle
as each image was acquired [4]. All data were acquired under
an institutional review board-approved study after obtaining
written informed consent.

The data acquisition process was initiated once each patient
was in the operating room and under anesthesia. The patient
was oriented in a supine position with the legs positioned in
stirrups. The entire volume of the prostate was angularly swept
twice, where the patient-right to left rotation corresponded to
the ARFI and SWEI combined sequence, and the patient-left to
right rotation corresponded to a high quality B-mode sequence.
All data acquired are inherently co-registered as the probe was
not repositioned once the data acquisition was underway and
the general anesthesia limited patient movement. After each
data volume was processed, the volumes were scan converted
using 3-D Slicer into a 0.15 x 0.15 x 0.15 mm3 voxel size [9].
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TABLE I
THE ARFI PUSH EXCITATION PARAMETERS FOR THE ER7B AND 12L4 TRANSDUCERS

Transducer Transmit
Foci (mm)

Frequency
(MHz)

Number of
Cycles F-number Number of

patients
ER7B 30, 22.5, 15 4.6, 4.6, 5.4 300, 300, 300 2.0, 2.0, 2.35 15
12L4 30, 22.5, 15 4.6, 4.6, 4.6 300, 300, 300 2.0, 2.0, 2.0 15

TABLE II
THE ARFI/SWEI HYBRID TRACKING CONFIGURATION FOR THE ER7B AND 12L4 TRANSDUCERS

Transducer Transmit
Focus (mm)

Frequency
(MHz) F-number PRF

(kHz)
ARFI Track

Spacing (mm)
SWEI Track
Offset (mm)

SWEI Track
Spacing (mm)

Track
Duration (ms)

ER7B 60 5.0 3.0 8.0 0.17 1.89 0.76 5
12L4 60 5.0 2.0 10.0 0.17 2.01 0.78 4.3

B. ARFI and SWEI Processing

The ARFI and SWEI combined sequence was described
by Palmeri et al. and the parameters for the ARFI push
excitation are included in Table I [4]. To summarize, a three
focal zone combined ARFI push excitation was used to create
an elongated depth of field for ARFI displacement generation
[10]. Four ARFI tracking beams were placed inside the beam
width of the push excitation. Twelve SWEI tracking beams
were split into two groups of six tracking beams which were
positioned to the left and right of the ARFI push excitation.
For each group of 6, the beams were laterally offset from
the push and spaced approximately one beamwidth apart [6].
The tracking lines were repeated over 4-5 ms to acquire
displacement data through time. The ARFI push excitation
and the corresponding 16 tracking line ensemble was repeated
82 times across the transducer to create a 55 mm lateral field
of view. The sequences used were slightly different based on
whether the ER7B or the 12L4 was used, these differences
are also noted in Tables I and II. Data acquired using these
sequences were captured as in-phase and quadrature (IQ) data.

For both the ARFI and the SWEI data volumes, Loupas’
phase shift estimator was used on the acquired IQ data
to calculate the displacements progressively through time at
each location [11]. To limit the impact of noise, a corre-
lation coefficient threshold of 0.95 was applied to exclude
spurious displacement estimates. The progressively tracked
displacement data were integrated through time to calculate
the displacement through time profile for each position. Depth
dependent gain was also applied to the ARFI data to account
for attenuation and focal effects [12]. The ARFI data were
histogram equalized to enhance lesion contrast.

The SWEI data were processed using techniques described
by Manduca et al. [13], Lipman et al. [14], Song et al. [15],
and Chan et al. [16]. The progressively tracked displacement
data were low pass filtered with a phase-preserving 2nd order
Butterworth filter using a cutoff frequency of 1.5 kHz and
3D directionally filtered to minimize the impact of reflected
waves [14]. 2D vector tracking was used to estimate the shear
wave speeds at each location [15]. Overlapping track locations
from neighboring ARFI excitation ensembles were used to
average the noise on individual shear wave speed estimates.

Finally, speed estimates greater than 12 m/s or with correlation
coefficients less than 0.6 were discarded.

C. B-mode acquisition

In the patient-left to right sweep, a high-quality B-mode
acquisition was used. 126 transmits which spanned the 55 mm
field of view were used with 7:1 parallel receive tracking and
coherent beamforming. For both transducers, a 7.0 MHz trans-
mit frequency was used with an F/3 focal configuration [4].
F/1 dynamic receive was used for the receive beamforming.
The B-mode data was processed by applying median filters
both axially and laterally and by rescaling the log compressed
data at each voxel from 0 to 255.

D. Histology

Post imaging, all prostates were radically excised, whole
mounted, and stained with hematoxylin and eosin (H&E) for
histologic analysis. The prostates were sliced apex to base
with each slide being spaced approximately every 3 mm.
An Epson 750 Pro scanner (Epson America, Long Beach,
CA, USA) was used to scan the histology slides individually.
Trained pathologists identified the Gleason grade of PCa foci
along with benign prostatic hyperplasia (BPH) and atrophy.
An identified lesion was considered clinically significant if
its Gleason grade was greater than or equal to 7 or was larger
than 0.5 mL. The histology slides were not registered with the
data volumes due to slice thickness and orientation variability.
Instead, a 27-region model determined by the anatomy of the
prostate was used to localize the center of each lesion in each
prostate [17].

E. PCa Identification and Classifier Training

In each ER7B case, the index lesion and a healthy region
were identified and conservatively segmented using 3D Slicer
for ARFI, SWEI, and B-mode volumes based on cognitive
fusion with histologically determined ground truth [9]. The
intersection of the three segmentations was used to identify
the subset of voxels with the highest confidence for their
suspected class. Of these 15 cases, 4 patients did not have
any identifiable healthy prostate tissue. Seven classifiers, listed
in table III, were applied to the normalized intersection data.
These classifiers were explored because of their simplicity,
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TABLE III
CLASSIFIER PERFORMANCE

Classifier Validation Accuracy (%)
Linear Discriminant Analysis 88.8
Linear SVM with SGD 90.3
Quadratic Discriminant Analysis 89.3
K-Nearest Neighbors (k=5) 89.5
Simple Decision Tree 87.9
Random Forest 89.0
Multilayer Perceptron
(hidden layers of 10 and 5) 90.2

ease of implementation, and ease of interpretation. 11-fold
cross validation was applied to the classifiers where in each
fold, a patient’s complete healthy and lesion data set was
excluded from the training of the classifier and used to assess
its performance. Validation accuracy was assessed as the
validation data set was balanced between voxels labeled as
lesion and healthy.

F. Image Combination and Testing

The highest performing classifier was chosen and used to
weight and combine ARFI, SWEI, and B-mode data into an
mpUS volume. The weighting was applied to the 15 12L4
cases which were not used in the training phase. For each
patient, all three modalities were normalized in the same
fashion as pre-training, and then combined based on the
weights determined by the classifier. This mpUS data was
examined in 3D Slicer and the centers of any apparent lesions
were identified [9]. The location of each lesion was determined
based on the 27-region model of the prostate [17]. The PCa
locations in the mpUS data were compared to the locations
from the histology analysis and considered to be a successful
match if both the mpUS and histology were within nearest-
neighbor regions [4].

III. RESULTS & DISCUSSION

Table III contains the validation accuracy of each classifier
examined in this study. All accuracies are comparable between
87.9% and 90.3%, indicating that the choice of classifier would
not greatly impact the resulting mpUS data. The stochastic
gradient descent (SGD) linear support vector machine (SVM)
was chosen for the remaining analysis on the 12L4 test data as
it slightly out-performed the other classifiers and was relatively
simple to implement and understand. This linear SVM resulted
in the straightforward combination scheme of multiplying
the normalized ARFI, SWEI, and B-mode data by -2.5, 3.1,
and -1.4, respectively, and summing the volumes. As in the
normalization process, the data was shifted to be 0 mean and
unit standard deviation, the absolute value of these weights
indicate the relative importance of the three original data
volumes. By using the SVM to determine the weights used
in summing the ARFI, SWEI, and B-mode images without
applying a final threshold to identify a given voxel as cancer
or healthy, we allow the inherent contrast in the three separate
modalities to be assessed by the reader in the summation.

Fig. 1. Sample B-mode (A), ARFI (B), SWEI (C), and mpUS (D), registered
images demonstrating structural concordance. The capsule (green) and central
gland (red) are identified along with a suspicious region (white arrow).

Sample axial images of the B-mode, ARFI, SWEI, and mpUS
volumes are shown in Figure 1. By not thresholding the data
based on the SVM, we allow for aspects of texture, symmetry,
and border delineation to be considered in the identification
of PCa.

The analysis of the lesions identified with mpUS is included
in Figure 2. A lesion was determined clinically significant if
its Gleason grade was greater than or equal to 7 or was larger
than 0.5 mL. In the 15 patients analyzed, 24 lesions were
identified as clinically significant by histology, 19 of which
were detected by mpUS. Although mpUS only identified 79%
of the clinically significant cancer, of the 20 lesions identified
by mpUS, only one was not clinically significant resulting in
a positive predictive value(PPV) of 95%.

Characteristics of the missed mpUS lesions are identified in
Figure 3. These lesions correspond generally to cases where
the image quality pre-summation was lacking, the lesions were
in the anterior of the prostate, or the lesions were a large
portion of the entire prostate and standard practices failed to
identify them. In the cases where the PCa is a substantial
portion of the overall volume, examining the SWEI data
volume and noting the underlying shear wave speeds, which
have not been contrast enhanced, would help in identifying
the suspicious regions.

IV. LIMITATIONS

The ground truth for PCa was identified in whole mount
histology following radical prostatectomy and due to imperfect
registration was limited to identifying the center of a lesion
into one of 27 regions. This limits the patients recruited to
the study to those with confirmed significant disease which
may introduce a bias into the assessment of mpUS lesion
detectability as every patient had at least one clinically sig-
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Fig. 2. Pathologists identified clinically significant lesions in the 15 12L4
patients. This included 4 identified as anterior lesions and 20 as posterior
lesions. mpUS was able to detect 50% of the anterior lesions and 85% of the
posterior lesions.

Fig. 3. Lesion volume versus Gleason grade for the clinically significant
cancers that were not detected in the mpUS data.

nificant cancer. The poor registration of histology to the data
volumes also limits the ability of more advanced machine
learning techniques for identifying PCa as many of them
require absolute truth or a large number of patients.

V. CONCLUSION

Creating a synthetic mpUS image volume using a linear
SVM allowed for the native contrast of the input volumes to
shine through to the combination. The specific combination of
ARFI, SWEI, and TRUS was also transferable between two
different transducers. mpUS imaging was able to identify 79%
of clinically significant PCa in a subset of 15 patients with a
PPV of 95%. Although mpUS was not sensitive to small ante-
rior lesions and posterior lesions which were large enough to
suppress the surrounding contrast, this study demonstrates the
clinical value of mpUS as it has high specificity for clinically
significant PCa. Ongoing work involves extending this process

to include information from quantitative ultrasound (QUS) and
developing an mpUS-based prostate biopsy targeting system
for PCa screening.
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