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Abstract—We propose a system identification based 

deconvolution algorithm for medical ultrasound imaging 

enhancement. Deconvolution is realized using Multivariate 

Autoregressive (MVAR) models taking into account the 

heteroscedastic nature of the recorded ultrasonic signals. Based on 

simulations, phantoms and in vivo data we show the superiority of 

the proposed algorithm under the presence of volatility in the 

obtained images. 
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I. INTRODUCTION 

Medical ultrasound is a non-invasive imaging technique 

that uses high-frequency sound waves to create real-time 

images of the human body. The procedure involves an 

ultrasonic probe that transmits short acoustic waves and records 

the echoes that are reflected back from targeted organ 

structures. These echoes are then used to produce images of the 

underlying anatomy. The interaction between the acoustic wave 

generated by the probe and the scanned human tissue introduces 

blurring to the output image, reducing both contrast and 

resolution. Based on physical models, this interaction can be 

described as the convolution between a tissue reflectivity signal 

and the emitted ultrasonic pulse. Various blind deconvolution 

methods have been proposed so far for recovering the true 

underlying reflectivity function (TRF) from the obtained 

radiofrequency (RF) signals. However, very few are based on 

system identification approaches [1]–[5] mainly due to the 

absence of a real input/excitation (i.e. only the output – obtained 

image – is known). In addition, computational complexity 

along with inherent difficulties related to model order selection 

and parameter estimation discourage the use of system 

identification techniques. Some of these difficulties arise due to 

the nonstationary characteristics of the recorded RF signals. RF 

signals exhibit volatility clustering (i.e., heteroscedasticity) or 

else highly concentrated variance in specific time points that 

may affect model order selection and estimation [6]. 

Heteroscedasticity may arise due to variations in the mean 

scattering/reflection strength of different types of tissue or due 

to the ultrasonic device and the beam profile of the transducer. 

Herein, we propose a fast and efficient deconvolution 
algorithm based on Multivariate AutoRegressive (MVAR) 
models and applied on In-Phase & Quadrature (IQ) data. 
Typically, the recorded RF signals are real-valued. Nonetheless, 
this work is based on complex IQ data. IQ data has lower 

sampling rate compared to RF data leading to decreased runtime 
when processing is involved. Based on our proposed 
methodology, each line of the IQ image is modeled as a 2D AR 
process, i.e., as an output of a linear filter driven by white 
Gaussian noise. The 2D refers to the real and imaginary 
components of each line. We show based on simulations how 
model order selection/estimation and deconvolution, is affected 
when the process is driven by heteroscedastic noise, and we 
propose methods to mitigate its effects. To demonstrate the 
superiority of the proposed algorithm, deconvolution is applied 
on phantom and in vivo data. 

II. METHODOLOGY 

A. Multivariate Autoregressive (MVAR) Model  

      An M-dimensional MVAR model of order p, denoted as 
MVAR(𝑝) can be expressed as follows [7] 

𝒚(𝑛) = ∑ 𝑨𝑘𝒚(𝑛 − 𝑘)

𝑝

𝑘=1

+ 𝜺(𝑛) = 𝜜𝝋(𝑛) + 𝜺(𝑛),    (1) 

where 𝒚(𝑛) ∈ 𝑹𝑀×1 contains the values of all 𝑀 time-series at 
time 𝑛. Herein, 𝑀 = 2 and 𝒚(𝑛) is a vector that consists of the 
real (𝒚𝑅) and imaginary (𝒚𝐼) parts of the IQ data at time 𝑛, i.e., 
𝒚(𝑛) = [ 𝑦𝑅(𝑛)  𝑦𝐼(𝑛)]𝑇 .  𝑨𝑘 ∈ 𝑹𝑀×𝑀  is an autoregressive 
matrix for each order 𝑘 and 𝜺(𝑛) is a zero-mean white noise 
vector. 𝑨 = [𝑨𝟏 … 𝑨𝑝] ∈ 𝑹𝑀×𝑀𝑝  and 𝝋(𝑛) =
[𝒚(𝑛 − 1)𝜯 … 𝒚(𝑛 − 𝑝)𝜯]𝑻 ∈ 𝑹𝑀𝑝×1 . The total number 𝑑 
of model coefficients is equal to the number of elements in 𝑨 
and therefore 𝑑 = 𝑀2𝑝.  In matrix form, (1) can be written as 

𝒀 = 𝑨𝜱 + 𝑬                                       (2) 

𝑨 can be estimated using the Least Squares approach [7], 

𝑨̂ = 𝒀𝜱𝜯(𝜱𝜱𝜯)−𝟏                              (3) 

The estimated 𝒀̂ is 𝒀̂ = 𝑨̂𝜱. In order to compute 𝑨̂ though, one 
needs first to select an appropriate MVAR model order. A large 
p value leads to overly complex models that lack the ability to 
generalize. On the other hand, a small p may produce rigid and 
inflexible models that are unable to capture accurately the 
underlying system characteristics. One method to overcome this 
problem, is the use of model order selection criteria such as the 
Bayesian Information Criterion (BIC) [8]. BIC tries to achieve a 
balance between model fitness and complexity. For each 𝑝 
value, the multivariate BIC is defined as [9], [10] 

𝐵𝐼𝐶(𝑝) = 𝑁 log(|𝜮̂|) + 𝑑 log(𝑁),                (4) 

where 𝑁  is the number of samples, 𝑑 = 𝑀2𝑝  is the total 

number of coefficients and |𝜮̂|  is the determinant of the 

estimated residual covariance 𝜮̂ = cov(𝒀 − 𝒀̂) = cov(𝑬̂). The 
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optimal 𝑝 is the one that returns the lowest BIC score. 

     MVAR models can be used to simultaneously extract the Z-

transform of the emitted pulse (based on 𝑨̂), as well as the 

underlying reflectivity function [1]–[3]. Once the MVAR 

model order is determined, the autoregressive matrix 𝑨  is 

estimated using (3). The MVAR residuals and therefore the 

wanted deconvolved signals are given as 

𝑬̂ = 𝒀 − 𝒀̂ = 𝒀 − 𝑨̂𝜱                             (5) 

B. Effect of Heteroscedasticity 

MVAR estimation typically assumes that the process is 

driven by white noise (i.e. 𝜺), with zero mean and constant 

variance (homoscedastic). However, the IQ data can be highly 

heteroscedastic and this may affect the model determination 

and estimation procedure [6]. Based on (4), 𝜮̂ is an estimate of 

the global residual covariance, and therefore model selection is 

achieved by taking into account equally all 𝑁 samples. Under 

heteroscedasticity, however, 𝜮 is no longer constant throughout 

time. The global estimate 𝜮̂ is thus dominated by the residuals 

with large variance, and model order selection is determined 

mainly by the respective samples. To this end, we remove the 

source of heteroscedasticity by tracking the time varying 

variance of both the real and imaginary components of each IQ 

line using an exponential moving average, 

𝜎̂𝑅𝑙
2 (𝑛) = 𝜆𝜎̂𝑅𝑙

2 (𝑛 − 1) + (1 − 𝜆)𝑦𝑅𝑙
2 (𝑛 − 1),      (6𝑎) 

𝜎̂𝐼𝑙
2(𝑛) = 𝜆𝜎̂𝐼𝑙

2(𝑛 − 1) + (1 − 𝜆)𝑦𝐼𝑙
2(𝑛 − 1),        (6𝑏) 

where 𝑙  corresponds to the 𝑙 th line. The real and imaginary 

components are normalized at each time point 𝑛 as 

𝑦𝑅𝑙 𝑛𝑒𝑤
(𝑛) =

𝑦𝑅𝑙
(𝑛)

√𝜎̂𝑅𝑙

2 (𝑛)

, 𝑦𝐼𝑙 𝑛𝑒𝑤
(𝑛) =

𝑦𝐼𝑙
(𝑛)

√𝜎̂𝐼𝑙

2(𝑛)

    (7) 

The new time-series 𝒚𝑅𝑙 𝑛𝑒𝑤
 and 𝒚𝐼𝑙𝑛𝑒𝑤

 are then used for model 

order selection/estimation. The value of the smoothing factor 𝜆 

is tuned using particle swarm optimization [11]. The fitness 

function  selected to be minimized is 

𝐽 = ∑ [𝑦𝑅𝑙

2

𝑛𝑒𝑤
(𝑛) + 𝑦𝐼𝑙

2

𝑛𝑒𝑤
(𝑛)]

𝑁

𝑛=1

                      (8) 

III. SIMULATIONS 

A. Simulation Study I 

 The first simulation paradigm consists of generating images 
based on MVAR models in order to examine the effect of 
heteroscedasticity. We generated 1700 ΙQ-like images of 
dimension 𝑁 × 𝐿 , where 𝑁 = 1000  is the total number of 
sample points in the axial direction, and 𝐿 = 128 is the number 
of lines in the lateral direction. Each line was modeled as a 
stable, two-dimensional (𝑀 = 2), MVAR(5) process, 

𝒚𝑙(𝑛) = [
𝑦𝑅𝑙

(𝑛)

𝑦𝐼𝑙
(𝑛)

] = ∑ 𝑨𝑘𝒚𝑙(𝑛 − 𝑘)

5

𝑘=1

+ 𝜺𝑙(𝑛),      (9) 

where the subscript 𝑙  denotes the  𝑙 th line (𝑙 = 1 … 𝐿) , 
𝒚𝑙(𝑛) consists of the real and imaginary components of the 𝑙th 
line at time 𝑛, and 𝜺𝑙(𝑛) is an heteroscedastic white Gaussian 
noise vector. The 𝑙th line can be expressed in complex form as 

𝑦𝐶 𝑙
(𝑛) = 𝑦𝑅𝑙

(𝑛) + 𝑖 ∙ 𝑦𝐼𝑙
(𝑛),                     (10) 

where 𝒀𝐶𝑙
= [𝑦𝐶 𝑙

(1) … 𝑦𝐶 𝑙
(𝑁)]

𝑇
∈ ∁𝑁×1. The noise 𝜺𝑙(𝑛) can 

also be seen as a complex Gaussian random variable, 

𝜀𝐶𝑙
(𝑛) = 𝜀𝑅𝑙

(𝑛) + 𝑖 ∙ 𝜀𝐼𝑙
(𝑛),                     (11) 

where 𝜠𝐶 𝑙
= [𝜀𝐶𝑙

(1) … 𝜀𝐶𝑙
(𝑁)]

𝑇
∈ ∁𝑁×1 .The final simulated 

image is 𝑰 = [𝒀𝐶1
… 𝒀𝐶𝐿]  ∈ ∁𝑁×𝐿. Heteroskedasticity was  

introduced in 𝜠𝐶 = [𝑬𝐶1
… 𝑬𝐶 𝐿] by modulating the real and 

imaginary parts of an homoscedastic complex Gaussian image 
𝑾𝐶 = [𝑾𝐶1

… 𝑾𝐶𝐿] ∈ ∁𝑁×𝐿by an envelope image 𝑯 

𝑅𝑒(𝜠𝐶) = 𝑅𝑒(𝑾𝐶) ⊙ 𝑯,     𝐼𝑚(𝜠𝐶) = 𝐼𝑚(𝑾𝐶) ⊙ 𝑯, (12) 

where 𝑯 ∈ 𝑹>0
𝑁×𝐿  and ⊙ denotes the Hadamard product. 𝑯 

was created using a linear combination of Gaussian and 
Laplacian kernels with different weights, sizes and standard 
deviations. The number of kernels, as well as the position of the 
center of each kernel on the image was chosen randomly. 

B. Simulation Study II 

For this simulation study, we applied both conventional and 
the proposed methodology on phantom and in vivo IQ images. 
Specifically, we examined, 

• Dataset 1: The cyst phantom of Field II [12]. 

• Dataset 2: The focused imaging dataset of hyperechoic cyst 
and point scatterers [13]. 

• Dataset 3: The human heart parasternal long axis view 
dataset [13], [14]. 

• Dataset 4: The in vivo carotid longitudinal-section dataset 
[13], [15]. 

Datasets 2,3,4 were provided by the Ultrasound Toolbox [13]. 

IV. RESULTS AND DISCUSSION 

 For comparison purposes all images were log compressed 
and adjusted in a dynamic range of 60dB. The resulting images 
are denoted with the symbol   ﬞ . In the first simulation case, the 
ground truth was known. Therefore, the deconvolution 
performance of the proposed and the conventional MVAR 
estimation technique were quantified using the well-known 
Peak-to-Signal Noise Ratio (PSNR) expressed as 

𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙 = 10 log10 (
2552

𝑀𝑆𝐸𝑟𝑒𝑎𝑙

),                  [13𝑎] 

𝑀𝑆𝐸𝑟𝑒𝑎𝑙 =
1

𝐿 ∙ 𝑁
∑ ∑[𝜠̌𝐶(𝑛, 𝑙) − 𝑰̂(𝑛, 𝑙)]

2
𝑁

𝑛=1

𝐿

𝑙=1

,        [13𝑏] 

where 𝑰̂  is the log compressed deconvolved image. We also 

calculated the quantity 𝑃𝑆𝑁𝑅𝑒𝑠𝑡, where instead of  𝜠̆𝐶 in (13b), 

we used the image 𝑰̆. For the second simulation set, 𝑃𝑆𝑁𝑅𝑒𝑠𝑡  

was the main metric of performance, since 𝜠̆𝐶  was not known.  

A. Simulation Study 1 

 The performance of both conventional and proposed 
techniques was found to be dependent on the coefficient of 
variation (𝐶𝑉) of the modulating envelope image 𝑯 (Fig.1a). 
Herein, 𝐶𝑉 was defined as the standard deviation of each line’s 
intensity divided by its mean intensity and averaged over all 
lines. 𝐶𝑉  describes the extent of variability in relation to the 
mean and can be used to quantify the magnitude of 
heteroscedasticity in the data. An image with very low 𝐶𝑉 could 
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either be an almost homoscedastic Gaussian noise image or a 
very dense image with high mean intensity and low variability. 
The negative effect of increased 𝐶𝑉 was observed mainly in the 
case of the conventional MVAR estimation technique. Based on 
Fig.1a, by taking into account the heteroscedasticity in the data, 
our proposed approach led to higher 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙 values as the 𝐶𝑉 
of the image increased. Model order selection was also affected 
by heteroscedasticity. A large 𝐶𝑉 led BIC into selecting high 𝑝 
values and therefore complex models that overfit the data 
(Fig.1b). The presence of heteroscedasticity results in large 

variance residuals that dominate the global estimate 𝜮̂ (4) and 
significantly reduce the effective sample size. Consequently, 
when heteroscedasticity is ignored BIC selects erroneously 
overdetermined models. In contrast, following our proposed 
approach, the MVAR residuals become more homoskedastic, 
and hence, BIC selects more parsimonious models with a model 
order similar to the true one ( 𝑝 = 5 ). Fig.2 illustrates the 
deconvolution results from two different images where the 𝐶𝑉 
of 𝑯 was log10 𝐶𝑉 = 0.037 and 0.678, respectively. For a low 
𝐶𝑉  both approaches efficiently approximated the true 

underlying image 𝑬̆𝐶 , with the conventional technique 
achieving slightly higher 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙  values. For a moderate to  
high 𝐶𝑉,  the proposed approach exhibited superior performance 
due to the presence of significant heteroscedastic effects.  
 In reality, 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙  cannot directly be estimated, therefore 
𝑃𝑆𝑁𝑅𝑒𝑠𝑡  is used as a metric of performance. For comparison 
purposes we illustrate the relationship between 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙  and 

𝑃𝑆𝑁𝑅𝑒𝑠𝑡  in Fig.1c. Overall, we observed a linear dependence 
between these two quantities. However, 𝑃𝑆𝑁𝑅𝑒𝑠𝑡  exhibited a 
plateau for values of 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙  over 16, and this is expected 

since the point of reference is the convolved image 𝑰̆ and not the 

true underlying image 𝜠̆𝐶 . The plateau value for 𝑃𝑆𝑁𝑅𝑒𝑠𝑡  is 
theoretically equal to the 𝑃𝑆𝑁𝑅  obtained by computing the 

𝑀𝑆𝐸 between 𝑰̆ and 𝜠̆𝐶. 
 Regarding runtime, the conventional approach required 
0.566±0.042s for each image, whereas the proposed technique 
was slightly slower (due to the particle swarm optimization of 
the smoothing factor 𝜆  of (6) – see Section II.B) with an 
execution time of 1.059±0.117s per image (Intel Core i7-
7500U@2.70GHz, 16GB RAM).   

B. Simulation Study 2 

 The deconvolution results of this simulation study can be 
found in Fig.3. To quantify the performance of both 
conventional and proposed approaches we computed the 
𝑃𝑆𝑁𝑅𝑒𝑠𝑡  on each deconvolved image. In all cases, taking into 
account heteroscedasticity led to higher 𝑃𝑆𝑁𝑅𝑒𝑠𝑡  values (and 
therefore improved contrast and resolution) compared to the 
case where heteroscedasticity was ignored. 

V. CONCLUSIONS 

      The main goal of this study was to elucidate the effects of 
volatility clustering in medical ultrasound imaging and provide 
a robust as well as fast deconvolution algorithm. The superiority 

        
                                                         (a)                                                                   (b)                                                                    (c) 

Fig. 1. Scatterplots between a) 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙 and log10(𝐶𝑉) of 𝑯 b) average model order 𝑝 (over all lines of each image) selected by BIC and log10(𝐶𝑉) of 𝑯 (note 
that all lines in an image were simulated using an order 𝑝 =5) and (c) 𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙 and 𝑃𝑆𝑁𝑅𝑒𝑠𝑡. The blue circles correspond to the case where the conventional 
MVAR technique was applied, ignoring heteroscedasticity. The red circles correspond to the proposed approach, where heteroscedasticity was taken into account. 

   

                              
Fig. 2. Deconvolution results based on the conventional MVAR estimation technique (middle panel), where heteroscedasticity is not accounted for, and the 

proposed approach (right panel). The true underlying image 𝜠̆𝐶 is depicted in the left panel. The top and bottom panels correspond to the case where the 𝐶𝑉 of 

the modulating envelope image 𝑯 is log10 𝐶𝑉 = 0.037 and 0.678, respectively. For the top and bottom panels the values of [𝑃𝑆𝑁𝑅𝑟𝑒𝑎𝑙, 𝑃𝑆𝑁𝑅𝑒𝑠𝑡] are [26.90, 

17.49] vs [24.22, 17.39] and [11.39, 11.09] vs [20.41, 17.73] for the conventional vs proposed approach, respectively.  
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of the proposed methodology under highly heteroscedastic 
environments justifies further investigation. Future work will 
involve the extension of the proposed model into a time-varying 
context in order to account also for pulse distortions and 
attenuation-dependent frequency shifts. 
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Fig. 3. Deconvolution results based on the conventional MVAR estimation technique (middle panel) and the proposed approach (right panel). The original B-

mode IQ image 𝑰̆ is depicted in the left panel. The 1st,2nd, 3rd and 4th row correspond to Dataset 1, 2, 3 and 4, respectively. From top to bottom, the 𝑃𝑆𝑁𝑅𝑒𝑠𝑡for 
the conventional technique was 17.60, 16.36, 14.72 and 14.94. The values of 𝑃𝑆𝑁𝑅𝑒𝑠𝑡 for the proposed approach were 18.67, 18.82, 15.64 and 18.75. 
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