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Abstract— Ultrasound computed tomography, implemented on the 

basis of circular transducer array in general, is known to provide 

quantitative characteristics of imaging objects. However, existing 

UCT solutions are not popular in clinical applications due to their 

usage restrictions and long reconstruction time. In this paper, we 

propose a versatile UCT system employing two facing transducer 

arrays to gather and analyze bidirectional reflected and traversed 

waves.  A Neural Network (NN) approach is incorporated to reduce 

the acquisition time for real-time image reconstruction. To gradually 

supplement the details of lesions, a refinement network structure is 

proposed and the quality of reconstructed image exceeds the quality 

of conventional systems when judged by diverse test metrics 
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I. INTRODUCTION 

Ultrasound is a non-invasive, safe, and widely available 
medical imaging modality. The majority of prior-arts in 
ultrasound imaging have focused on B-mode ultrasonography 
which utilizes reflection and scattering of the ultrasound waves. 
The operator dependency and the fact that the reconstructed 
image offers only qualitative information are two major 
limitations of conventional b-mode ultrasonography. Ultrasound 
Computed Tomography (USCT) that provides quantitative 
characteristics of a tissue such as the sound speed and 
attenuation overcomes the fundamental drawbacks of B-mode 
ultrasonography and has shown great potential in the area of 
cancer localization, where malignant lesions have abnormal 
acoustic properties [1].  

Despite its safety and specificity, USCT suffers from several 
major weakness: limited versatility and computational 
complexity. Firstly, conventional USCT has a ring-shaped 
transducer alignment to acquire diffracted ultrasound wave in all 
directions. However, such transducer alignments exerts 
limitation on the usage of USCT; USCT can only be used on 
protruding parts of the body such as breast. Secondly, because 
the image reconstruction of USCT relies on the acoustic wave 
equation, numerically-intensive iterative computation is 
necessary [2]-[4], which results in significant processing time. 

In addition, the convergence of the iterative methods is not 
guaranteed for imaging targets with high-contrast [3].  

In order to overcome aforementioned issues, we propose a 
neural network (NN)-assisted  USCT system based on two 
facing linear transducer arrays. The proposed USCT method 
employing learning-based deep neural networks (DNNs) 
enables a sensory-to-quantitative-image synthesis with reduced 
processing time and enhanced accuracy [5]. The proposed DNN 
featuring a coarse-to-fine network structure recovers high-
frequency details and textures such as brain creases and vessels 
irrecoverable in conventional DNNs. Additionally, a generator-
discriminator structure is applied to the proposed DNN  to 
synthesize more photo-realistic image that cannot be represented 
by PSNR [6]-[8].  

II. MEASUREMENT MODELS AND DATA ACQUISITION 

The physics of propagating acoustic wave is governed by the 
Helmholtz’s equation. The lossless propagation of ultrasound in 
biological tissue can be described as [9] 

(∇2 + 𝑘0
2)p(�̅�) = 𝑂(�̅�)𝑝(�̅�) 

                                              = (𝑘0
2 − 𝑘(�̅�)2)𝑝(�̅�) 

where �̅� is the position vector, 𝑘 = 𝑤/𝑐 is the wavenumber at 
frequency 𝑤 and sound speed c, and  𝑂(�̅�) is the object profile 
that we aim to reconstruct. The inhomogeneous wave equation 
is formulated with the Green’s function 𝐺(𝑘0, �̅�),  and the 

steady-state pressure 𝑝𝑠𝑡𝑒𝑎𝑑𝑦(�̅�)  generated in the region Ω with 

the incident pressure 𝑝𝑖𝑛𝑐(�̅�) is [4]  

𝑝𝑠𝑡𝑒𝑎𝑑𝑦(�̅�) = 𝑝𝑠𝑐(�̅�) + 𝑝𝑖𝑛𝑐(�̅�) 

 = ∫ 𝑂(r)𝐺(𝑘0, �̅� − r) 𝑝𝑠𝑡𝑒𝑎𝑑𝑦(r)𝑑𝑟 + 𝑝𝑖𝑛𝑐(�̅�)
Ω

 

In two-dimensional (2-D) area, the Green’s function from (2.2) 
can be given by  

 𝐺(𝑘0, �̅�) =  −
𝑗

4
𝐻0

(2)
(𝑘0|�̅�|) 

where 𝐻0
(2)

 denotes the Hankel function.  
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A. Measurement System 

 
Figure 1.Top-view of the UCT system and actual steady-state pressure 

distribution of MRI-derived phantom. 

 
Figure  1 illustrates the UCT system configuration applied in 

this work. Two facing linear transducer arrays, each with 128 
piezoelectric elements, are employed to measure steady-state 
ultrasound pressure. Each transducer alternately emits a 0.3MHz 
continuous sinusoidal wave. The scattered pressure 𝑝𝑡𝑟𝑎𝑛𝑠

𝑠𝑐  
measured by each transducer element can be described as    

 𝑝𝑡𝑟𝑎𝑛𝑠
𝑠𝑐 (𝑟𝑡𝑟) = ∫ 𝑂(r)𝐺(𝑘0, 𝑟𝑡𝑟 − r) 𝑝𝑠𝑡𝑒𝑎𝑑𝑦(r)𝑑𝑟

Ω
 

where 𝑟𝑡𝑟 is the position vector of the transducer. The 
distribution of steady-state pressure can be obtained by solving 
(2.2) using the generalized minimal residual method [10]. 

B. Dataset 

The training dataset for the proposed NN-based ultrasound 
system is created by gathering the magnitude and the phase of 
the scattered pressure of object phantoms measured at each 
transducer element. 2-D sliced MRI-derived numerical brain 
data obtained from Multimodal Brain Tumor Segmentation 
Challenge [11] are used as the object phantoms. The sound 
velocity of the brain phantoms was mapped between 1484 m/s 
and 1573 m/s depending on the parts of the brain. The 2-D 
pressure map for each phantom was generated by solving (2.2) 
and (2.4). The size of the pressure matrix is 128x128 where each 
column and row represents the transmitting element and 
receiving element, respectively. In order to utilize magnitude 
and phase information of the scattered pressure, the real and 
imaginary parts of the pressure matrix are separately handled in 
the NN. The pressure matrices obtained from 2400 2-D 
phantoms originated from 80 brains (60 for the train, 20 for the 
test) are used for the network training.  

III. RECONSTRUCTION METHOD 

In this section, the architecture of the proposed ultrasound 
imaging networks is presented. For the quantitative comparison 
of the proposed data-driven approach, a novel model-driven 
reconstruction algorithm is also proposed.  

A. Iterative analytic reconstruction 

The iterative analytic reconstruction method consists of two 
steps:   

1) Reconstruct 𝑂(𝑟) by solving equation (2.2), 

2) Improve prediction of the estimated steady-state 

pressure  �̃�𝑠𝑡𝑒𝑎𝑑𝑦 with calculated 𝑂(𝑟). 

The procedure starts by initializing �̃�𝑠𝑡𝑒𝑎𝑑𝑦 as a known free-

space pressure distribution 𝑝𝑖𝑛𝑐 . Through iteration, p̃𝑠𝑡𝑒𝑎𝑑𝑦 

approximates the actual pressure distribution 𝑝𝑠𝑡𝑒𝑎𝑑𝑦, and the 
accuracy of reconstructed object profile 𝑂(r) improves. TVAL3 
[12], a form of total variation minimization algorithm [13], is 
used for the reconstruction of 𝑂(r), and the GMRES solver is 

adopted for the prediction of  �̃�𝑠𝑡𝑒𝑎𝑑𝑦.  

B. Learning-Based reconstruction 

It is well known that a network with the objectives of 
minimizing L1 and L2 losses often results in blurred images [14]. 
For detailed reconstruction of high-frequency image 
components, we propose an ultrasound imaging refinement 
network, referred to as a UINet, for the image systhesis. The 
UINet consists of 1) ultrasound encoding network that extracts 
useful features from real and imaginary pressure distribution, 
and 2) image decoder network that reconstructs the object 
profile from the encoded ultrasound data through a cascade 
refinement structure.  

In addition, a generative adversarial network  that is known 
to generate plausible-looking natural images using generator-
discriminator structure [6, 15, 16] is also applied to UINet for 
further enhancement. The aforementioned Ultrasound imaging 
refinement generative adversarial network (UIGAN) is 
implemented by adding a discriminator to the UInet. 

C. Network Architecture 

The ultrasound encoder network extracts meaningful 
features from the measured pressure. Each encoder receives 
128x128 real and imaginary ultrasound pressure matrix. The 
encoder network has 16 channels of fully connected layer with 
the ReLU activation functions followed by the same layer with 
64 channels. The outputs of each encoder are concatenated and 
forwarded to the image decoder. 

The image decoder network synthesizes the object profile 
from the encoded ultrasound features. The UINet aims at 
reconstructing the high-frequency details of object phantoms 
that can be lost in conventional encoder-decoder network 
architectures. Inspired from the Cascade Refinement Network 
[17], the proposed image decoder recovers the image details via 
progressive detail refinement process. The network starts with a 
series of 3x3 convolutional blocks and residual blocks [18] as 
shown in Fig. 2(a). Then, the filtered feature (I) is resized to a 
feature with lower resolution through a series of max-pooling. 
In our implementation, a 4x4 low-resolution features (I1) are 
generated through 6 layers of max pooling. Then, I1 is applied to 
the first refinement module (R1) that is composed of 
convolutional layers, for the generation of refined features (H1 = 
R1(I1)). The refined features are then convolutional up-sampled 
to the higher resolution (H1

up) and concatenated with 𝐼2 , a 5 
times max-pooled output of the I. The refinement module 
receives the concatenated input and synthesizes a higher 
resolution output (H2 = R2(I2,H1

up)). This procedure is repeated 
until the desired resolution is achieved and the signal 
propagation paths can deliver low level features I to high level 
refined features with limited loss on information. The number of 
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refinement modules is set to 7 and 128x128 output features (H7) 
are generated. For the final layer, 1x1 convolution is used to 
synthesize the object profile from H7.  

The discriminator structure is applied to UIGAN for the 
generation of realistic natural images. While maintaining the 
generator’s loss function for the accuracy of object profile, the 
discriminator adds a perceptual loss to generate more plausible 
images. The discriminator is composed of convolutional layers 
and batch normalization layers [19]. For high-frequency image 
reconstruction, the Markovian Discriminator [16] architecture is 
employed. The markovian discriminator classifies local image 
patches as real or fake, opposed to verifying the entire image.  

D. Training Details 

The objective function of the UINet is 

 G∗ = 𝑎𝑟𝑔 min
𝐺

E𝑥,𝑦[‖𝑦 − 𝐺(𝑥)‖2] 

wherein G* tries to minimize the mean-squared difference 
between the ground truth (y) and the generated output 𝐺(𝑥) 
from the corresponding input (x). Unlike standard GAN, the 
proposed UIGAN maintains L2-distance of the generator to 
strictly regulate the output close to the ground-truth.  In addition, 
the UIGAN includes a discriminator loss to the L2-distance to 
create undistinguishable outputs by the discriminator network D. 
Thus, the objective function of the UIGAN is 

 G∗ =  𝑎𝑟𝑔 min
𝐺

max
𝐷

E𝑥,𝑦(‖𝑦 − 𝐺(𝑥)‖2))  + 𝜆(E𝑥[1 −

𝐷(𝐺(𝑥))] + E𝑦[𝐷(𝑦)]) 

Entire networks are trained to solve an objective function using 
the Adam solver with the learning rate of 0.0001 and the 
momentum parameters of β1 = 0.9 and β2 =  0.999. For the 
training of UIGAN, standard GAN training scheme [20] is 
employed, wherein the descriminator and the generator  are 
trained alternately.  

IV. RESULTS AND DISCUSSION 

We compare the performance of the UINet and the UIGAN 
to that of TVAL3 under two-facing transducer array 
configuration. Additionally, image reconstruction performance 
of conventional USCT under  circular  transducer array 
configuration is presented for comparision. The networks are 
evaluated using 600 object profiles from 20 different brains. For 

 aMNAE depends on the acquision reduction factor [3] The evaluated object profile are 64x64 

resolution. 

 

Model driven approach Data driven approach 

Circular arraya Proposed both-sided array 

Uniform 

sample 

Compress

ed sensing 
TVAL3 UINet UIGAN 

MNAE 0.2~1.2 0.18~0.65 0.e0 0.26 0.3 

SSIM - - 0.7242 0.8217 0.8075 

Time - - 432s/iter 0.0316s 0.03628 

Table 1 Quantitative performance comparison of model-driven and data-

driven approaches in phantom image reconstruction 

 
 

Figure 2 Architecture of the ultrasound encoder, image decoder, and discriminator network  
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the quantitative assessment of the network, the mean normalized 
absolute error (MNAE) and the structural similarity (SSIM) 
index metrics are investigated. Table I shows that two-facing 
transducer arrays can reconstruct reliable object profile even 
with limited angular information. The proposed UCT system 
shows similar MNAE as compared to the existing complex 
circular array UCT for the restoration of higher resolution 
(128x128) images while offering versatility without usage 
restrictions. TVAL3 algorithm outperforms NN aproaches in 
MNAE criteria but the underperforms in SSIM, which indicates 
that proposed network structure is effective in extracting the 
high-frequency details of the image.  Moreover, the NN 
approaches achieves significant reduction in the reconstruction 
time of less than 0.03628s, which opens the new possibility of 
real-time UCT imaging. 

Figure 3 shows the reconstruction results of the analytical 
and NN-based approaches. TVAL3 solver results in blurry 
image without revealing the brain crease. On the contrary, the 
proposed network approaches recover the details of the brain 
phantom. It is also clear from Fig. 3 that the UIGAN synthesizes 
high contrast images as compared to the UINet. Such 
performance improvement stems from the fact that UINet 
selects a final image with minimal Euclidean distance by 

averaging the possible output candidates. The high contrast 
realistic output of the UIGAN is  attributed to the fact that the 
discriminator of the UIGAN ignores the low-contrast images as 
fake images.  

V. CONCLUSION 

In this work, a learning-based high-resolution UCT scheme 
using two facing transducer arrays is presented. The proposed 
learning-based approaches reconstruct similar quality image as 
compared to conventional complex USCT schemes based on a 
circular transducer array while significantly reducing the 
reconstruction time. Moreover, the progressive refinement 
network structure is promising in overcome the high-frequency 
loss issue in interative analytic reconstruction schemes.  
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