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Abstract—In the linear wave propagation regime, an analyt-
ical mesh-free Green-function decomposition has been shown as
a viable alternative to FDTD and FEM. However, its expansion
into nonlinear regimes has remained elusive due to the inherent
linear properties of the Green-function approach. This work
presents a novel frequency-domain Green function method to
describe and model nonlinear wave interactions in isotropic
hyperelastic media. As an example of the capabilities of the
method, we detail the generation of sum frequency waves when
initial quasi-monochromatic waves are emitted in a fluid by
finite sources. The method is supported by both numerical and
experimental results using immersion ultrasonic techniques.

Index Terms—Green functions, nonlinear ultrasonics, wave
mixing

I. Introduction
Nonlinear ultrasonic measurements are attractive for

industrial nondestructive testing in various engineering
structures due to their higher sensitivity to changes of
material properties than in linear cases. However, due
to the limited availability of models of the nonlinear
wave scattering in solids, which are often challenging to
implement and resource-intensive, these measurements are
not widely used in the industry. Most of the developed
methods consider the linear wave propagation only, so
there is a huge need for an efficient modeling technique
for the wave scattering in the nonlinear regime. This
will open up new measurement techniques with increased
performance.

Numerical methods such as finite element [1], [2] and
finite difference time domain [3] are used to model non-
linear wave interactions in 2D and 3D configurations.
These well known methods become inefficient at higher
frequencies (MHz range and above) due to the requirement
of 20 or more points per wavelength in the meshing
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grid. To overcome this constraint, we present a semi-
analytical mesh-free method, based on Green functions,
able to describe 3D elastic wave scattering in the nonlinear
regime. The method enables us to study classical and
non-classical second order elastic waves interactions in
isotropic hyperelastic media [4], [5].

II. Green function method for nonlinear interactions of
elastic waves in isotropic media

A frequency domain Green tensor Gji(xk − x0k) sat-
isfies the following Navier-form equation of motion of a
homogeneous isotropic hyperelastic solid

ρc2LGji,jkFi − ρc2S (Gji,jk −Gki,jj)Fi

+ρω2GkiFi = F
(n)
i , (1)

with summation over repeating indices and with Gji,hk =
∂h∂kGji and where cL and cS are the longitudinal and

Fig. 1. Problem geometry for the calculation of the nonlinear elastic
fields in the elastic medium. Two finite dimension sources S1,2 are
submersed in the fluid.
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Fig. 2. Linear evanescent ultrasonic fields in the x0z plane at 4 MHz:
pressure P in the fluid, and ux,z displacements in the solid, of the
evanescent longitudinal and shear waves.

shear wave velocities, respectively, ρ is the volumetric
mass density. Further, Fi is the discreet force applied at
point x0k. F

(n)
i is the nonlinear force that depends on

the second and third order elastic constants of medium
[5]. The nonlinear bulk force can be written in terms of
divergence of the nonlinear stress tensor. It was calcu-
lated by applying a specific procedure for the interaction
interference term as presented in [5], [6]. The two-wave
interaction stress tensor σ

(12)
ij for any two interacting

displacement wave-fields u1 and u2 was

σ
(12)
ij (u1,u2) =

1

4
(σij(u1 + u2)− σij (u1 − u2)) (2)

where u(x) =
∫
G(x− x0) ·F(x0)d

3x0. The divergence of
the interference term led to the nonlinear bulk force F

(n)
i .

Using this approach, the following procedure was used
to calculate nonlinear elastic fields in submersed elastic

Fig. 3. Linear ultrasonic fields in the x0z plane at 6 MHz: pressure
P in the fluid, and ux,z displacements in the solid, of propagating
shear wave.

Fig. 4. Nonlinear ultrasonic field in the x0z plane: pressure P in the
fluid, and uz displacement in the solid, of the nonlinear wave at sum
frequency of 10 MHz.

isotropic semi-space:
• Formulate the geometry using a grid as outlined in [7].

Note that a full interface between the fluid and solid
semi-spaces is considered for both sources S1,2, see
Fig. 1. Two separate grids are used for each frequency
in order to minimise the number of equations to solve.

• Calculate point-source strengths at the interfaces,
using global matrices at both initial frequencies [7].

• Calculate the nonlinear forces to propagate nonlinear
elastic fields in the solid. In our case, we use the x0z
plane to visualize the fields, see Fig. 1.

A numerical model for the nonlinear wave interactions
below water-aluminium interface was implemented using
the following configuration. Two sources inclined at angles
31.5◦ and 20.8◦ with diameters of 4 mm were used to
generate initial waves of 4 MHz and 6 MHz, respectively.
The first source has a vertical offset of 25 mm from
the interface and generated only evanescent fields in the
aluminium whilst the second one (vertical offset 27 mm)
generated a shear wave field in the solid. The horizontal
offset was 25 mm between the sources. Material properties
were the same as in [5].

III. Results
Figs. 2 and 3 show calculated linear ultrasonic fields

(pressure in fluid, and x and z displacements in the
solid) generated by individual sources at their different
initial frequencies. When the incidence beam impinges
the interface above the second critical angle, see Fig. 2,
we observe a Goos-Hänchen beam shift [8] as well as the
evanescent field. Fig. 3 shows the shear wave ultrasonic
wave-field in the solid only due to the source angle above
the first critical angle.

Fig. 4 shows nonlinear ultrasonic field in the solid
generated by the non-classical wave mixing when the
interaction occurred between propagating shear wave and
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evanescent longitudinal and shear waves. It is important
to note that the magnitude of the nonlinear field is 75
dBm below that of the linear field in the far-field zone,
due to the small interaction volume linked to the small
penetration depth of the evanescent wave-field.

Experimental results employing quasi-monochromatic
wave excitation of initial waves are presented in [9].

IV. Conclusions
A 3D frequency-domain Green function method to de-

scribe and model nonlinear wave interactions in isotropic
hyperelastic media is presented. It is supported by nu-
merical results, calculating the sum frequency due to the
ultrasonic response from the mixing at a water-aluminium
interface. The analytical nature of the method enables
the individual analysis of the nonlinear wave interactions
for the different wave combinations (L+S,S+L,L+L,S+S)
with an arbitrary selected wave interaction volume in both
the near and far-field zones. The method can be extended
to more complex guided wave interactions with localised
inhomogeneities in elastic waveguides, by changing bound-
ary conditions.
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