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Abstract—Short-lag spatial coherence (SLSC) beamforming
has the potential to improve the diagnostic power of a multitude
of ultrasound imaging techniques. One challenge for advanced
real-time implementation is repeated correlation calculations. To
address this challenge, this paper introduces CohereNet – a novel
deep neural network architecture that estimates the coherence
function in efforts to bypass the repeated correlation calculations
required for SLSC imaging. The network was trained and eval-
uated using in vivo breast data, demonstrating similar contrast,
CNR, and SNR (i.e., within 7.4%) and improved computational
speed (i.e., a factor of 3.4 improvement) when compared to the
offline implementations. In addition, the model is generalizable
across multiple tissue types, probe geometries, and ultrasound
systems. These results are promising for the use of deep learning
architectures as a replacement for correlation estimation in
multiple areas of coherence-based ultrasound imaging.

I. INTRODUCTION

A multitude of ultrasound image formation and signal
processing techniques rely on fundamental cross-correlation
calculations, including speckle tracking, elastography, and
advanced beamforming techniques. These methods are advan-
tageous because of their improvements in image quality or
their additional insight into the disease status of tissue. For
example, speckle tracking can be used to characterize cardiac
function by assessing the deformation of the ventricles [1],
elastography relies on temporal correlation measurements of
tissue after the application of a radiation force impulse in
order to measure elastic properties of tissue [2], and advanced
beamforming techniques such as minimum variance and short-
lag spatial coherence (SLSC) beamforming improve image
resolution and contrast, respectively [3], [4]. Each of these
techniques require repeated correlation calculations, which are
often considered as the time-consuming bottleneck to real-time
processing and image display.

In order to bypass the repeated correlation steps required
for many of these techniques, we propose a custom Deep
Neural Network (DNN) to be used as a universal approximator
in order to estimate the coherence function for applications
in coherence-based beamforming, specifically SLSC [4]. The
network is constructed to model the computational structure
of the coherence function, and consists of a custom fully
connected (FC) architecture with the goal of estimating the
coherence function, while preserving the quality of SLSC
images. Because our goal is to apply this neural network to
in vivo data from different patients and regions of the body,
generalization is critical for successful application. In this

paper, we introduce CohereNet — a custom DNN trained with
in vivo breast data to estimate the coherence functions required
to create SLSC images. We also explore the generalizability
of CohereNet to other types of phantom and in vivo tissue, as
well as a range of probe geometries.

II. METHODS

A. Short-lag Spatial Coherence (SLSC) implementation

SLSC relies on the spatial coherence of backscattered pres-
sure waves that are received across the ultrasound transducer.
Once the data is delayed, normalized correlation measurements
are calculated between equally spaced elements, or lags,
resulting in the normalized spatial correlation:

R̂(m) =
1

N −m

N−m∑
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∑n2
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si(n)si+m(n)√∑n2
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(1)
where N is the number of receive elements in the transducer,
m is the lag, si(n) is a time-delayed, zero-mean signal
received at element i from depth n.

This resulting spatial coherence function is then summed
up to a specific short-lag value, M , yielding the value of the
SLSC pixel. This process is repeated for each lateral and axial
position in the image, with an axial correlation kernel, k, of
7 samples. For the purposes of explanation, sk(n) ∈ Rk×N

will be referred to as one axial correlation kernel of ultrasound
channel data across the receive aperture.

The SLSC algorithm is implemented through a Matlab mex
function on a central processing unit (CPU). In addition, an
optimized implementation exists and is detailed in [5] which
runs on a graphical processing unit (GPU). The main differ-
ence in computation between the original CPU implementation
of SLSC and the GPU implementation is in the correlation
calculation, which uses mathematical simplifications in order
to perform pixel-wise correlations and allow for parallel pro-
cessing on a GPU. Additional details can be found in [5]. The
GPU implementation was used in this study for comparison of
image quality and speed with the DNN SLSC implementation.

B. Deep Neural Network

A custom DNN was implemented using Keras [6] with
Tensorflow [7] with an architecture shown in Fig. 1. The input
to the network was one axial kernel of delayed channel data,
sk(n), and the output was the associated coherence curve, R̂,
over the entire receive aperture. Due to the geometry of the
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Fig. 1. Graphic depiction of the network architecture.

receive array, the dimensionality of the input data is 7x64 (i.e.,
one axial kernel of the entire receive aperture) and the output
is 1x64 (i.e., the coherence function for all lags). In order to
include data without zeros associated with the receive aperture,
the channel data was delayed and filtered accordingly prior to
being used as training data. The ground truth coherence curves
were generated using a MATLAB (MathWorks Inc., Natick,
MA, USA) implemented mex function for each lateral and
axial position, as described in Section II-A.

The network was trained using a modified mean squared
error (MSE) loss function:

MSE =
1

m

m∑
i=1

wi (yi − ŷi) (2)

where m = 64 is the number of lags being computed, yi is the
computed coherence curve, ŷi is the ground truth coherence
curve, and w is a vector of gaussian weights with µ = 0
and σ = 0.8. The custom weighting scheme was implemented
in order to place higher penalty on the shorter lags, which
are typically used to create an image, and therefore more
important to image quality.

The network was trained using a batch size of 128 using
an ‘adam‘ optimizer for 5 epochs with a learning rate of
0.001. The training and validation data were loaded using a
custom Keras class in order to ensure data was not repeated
and was randomized between each epoch. The PC used for
this process was an Intel Core i5-6600k CPU with 32GB of
RAM alongside an Nvidia GTX Titan X (Pascal) with 12GB
of VRAM and a core clock speed of 1531MHz.

C. Dataset

The training data were taken from a dataset of 24 unique
ultrasound scans of in vivo breast masses, obtained after
informed consent and approval from the Johns Hopkins
Medicine Institutional Review Board. Data were collected
using an Alpinion ECUBE-12R research ultrasound scanner
connected to an Alpinion L8-17 linear array ultrasound trans-
ducer (Alpinion, Seoul, South Korea). The transducer has
128 elements, with N = 64 allowed to receive at one time.
The data were split into training, validation, and testing sets,
with 18 patients used for training, 3 for validation, and 3 for
testing to ensure generalization across patients. Each patient
contains 2 orthogonal acquisitions (radial and anti-radial), with

Fig. 2. Example coherence curve where the original coherence curve is shown
in dark blue, and the DNN computed coherence curve is in light blue.

10 frames per acquisition. When deconstructed into training
examples, this results in 92.2 million training examples and
15.4 million for each validation and testing.

In order to test the ability of the network to generalize
across different types of data, testing was also performed
using in vivo liver data (which was described in a previous
publication [8]), data from a CIRS Model 054GS phantom
data (CIRS, Norfolk, VA), phased and curvilinear arrays, and
the Alpinion and Verasonics ultrasound systems (Verasonics,
Kirkland, WA).

D. Quantitative metrics

Contrast, signal-to-noise ratio (SNR), contrast-to-noise ratio
(CNR), and generalized contrast-to-noise ratio (GCNR) [9]
were measured and compared across matched coherence-based
images formed using each of the CPU, GPU, and DNN
algorithms created with the same channel data according to
the following equations:

Contrast = 20 log10

(
Si

So

)
(3)

SNR =
So

σo
(4)

CNR =
|Si − So|√
σ2
i + σ2

o

(5)

GCNR = 1−
∫ ∞
−∞

min
x
{pi(x), po(x)}dx (6)

where Si and σi are the mean and standard deviation, re-
spectively, within a region of interest (ROI) inside of the
target prior to log-compression, So and σo are the mean and
standard deviation, respectively, of a region of interest outside
of the target prior to log-compression, and pi and po are the
probability density functions of the signal inside and outside
the target, respectively.

III. RESULTS

Fig. 2 shows an example coherence function using the
deep learning model. Overall, the DNN predicted the spatial
coherence with a MSE of 0.037. The DNN SLSC curve (shown
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Fig. 3. Example ultrasound images generated from (a) the original SLSC
algorithm on CPU, (b) GPU SLSC, and (c) DNN SLSC.

in light blue) fits the shorter lags (<40) better than the larger
lags, due to the weighted loss function used to train the
network (as mentioned in Section II-B).

Fig. 3 shows one example from the test set of in vivo breast
data formed from the same channel data using the original
CPU algorithm, the GPU algorithm, and the DNN. Fig. 3(b)
shows the GPU SLSC image which appears brighter and more
smoothed than the original SLSC image of Fig. 3(a). The DNN
SLSC image (i.e., Fig. 3(c)) is qualitatively more similar to
the original SLSC image both in texture and in brightness.

To quantify the image quality differences, Fig. 4 shows the
contrast, SNR, CNR, and GCNR for each of the images from
Fig. 3. First, confirming the qualitative observations above,
the contrast, SNR, CNR, and GCNR were all similar when
the original SLSC results are compared to the DNN SLSC
results (and both have less similarity with the GPU SLSC
results). The contrast of the original, GPU, and DNN SLSC
was -5.2 dB, -3.2 dB and -5.5 dB, respectively. The SNR for
the original and DNN SLSC were 2.7 and 2.5, respectively,
while the GPU SLSC was 3.1. The CNR for both the original
and DNN were approximately 1.0 and the CNR for the GPU
SLSC was 0.7. Finally, the GCNR of the original SLSC, and
DNN SLSC were both approximately 0.6, and the GCNR of
the GPU SLSC was 0.4. Over the entire test set (i.e. 60 frames
from 3 patients not included during training or validation), the
mean contrast difference between the original SLSC image and
the DNN SLSC image was 0.6dB, and the mean SNR, CNR,
and GCNR differences were 0.07, 0.09, and 0.04, respectively.

Fig. 5 shows the mean processing time for GPU and DNN
SLSC compared to the original, with the standard deviation
shown as an error bar. The computation time for the original
SLSC implemented on CPU was 2.6 s. On GPU, this pro-
cessing time was 0.4 s, corresponding to a 6.4x improvement.
The improvement compared to the original SLSC for the DNN
SLSC was 3.4x.

In order to test generalizability, Fig. 6 shows different
test examples including in vivo liver data [8] as well as the
CIRS phantom. Figs. 6(a)-(d) show the results from a linear
array, demonstrating that the DNN SLSC images are generally
qualitatively similar to the original SLSC image. Figs. 6(e)-

Fig. 4. The contrast (a), SNR (b), CNR (c), and GCNR (d) of each type of
image shown in Fig. 3.

Fig. 5. The computation time required for each SLSC model.

(f) and 6(g)-(h) show results from the curvilinear and phased
arrays, respectively. Both pairs of images are qualitatively very
similar. Finally, Figs. 6(i)-(j) show results from the Verasonics
phased array. Overall, on the entire additional test set, there
was an average of 14% similarity among all image quality
metrics.

IV. DISCUSSION

There are three main advantages to a deep learning approach
to coherence-based beamforming. First, by training a deep
neural network to estimate the coherence function, the re-
peated lateral and axial calculations can be bypassed, therefore
creating images faster than the original CPU-based approach.
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Fig. 6. Example ultrasound images on the left using the original SLSC algorithm and on the right the DNN of the CIRS phantom using (a) and (b) a linear
array, (e) and (f) curvilinear array, (g) and (h) an Alpinion phased array, (i) and (j) a Verasonics phased array and (c) and (d) in in vivo liver using a linear
array.

This opens up the possibility of integrating additional, more
complex algorithms into the processing pipeline.

Second, the DNN SLSC image is more similar both quali-
tatively (as shown in Fig. 3) and quantitatively (as shown in
Fig. 4) to the original SLSC algorithm when compared to the
GPU SLSC algorithm. This is likely due to the simplifications
required to compute the average correlation for a specific lag
value on the GPU. Because the neural network architecture
is modeled after the mathematical correlation calculation, the
network is learning the coherence function itself.

Third, the learned features allow the network to be gen-
eralizable across multiple ultrasound imaging platforms and
multiple transducer types as shown in Fig. 6, as these dif-
ferences introduce changes only to the raw ultrasound data
and not the deep learning architecture. This generalizability is
promising, considering that the coherence information is used
in many other ultrasound applications, making this network
useful for beamforming algorithms other than SLSC and its
many derivatives including minimum variance beamforming
and coherence-weighted imaging.

While the GPU algorithm offers better speed improvements
than the DNN SLSC implementation, there is additional room
for improvement.

V. CONCLUSION

This paper demonstrates the first use of deep learning
to estimate spatial coherence functions in order to form
coherence-based ultrasound images. The trained, custom DNN
(i.e., CohereNet) resulted in images that are within 7.4%
of image quality metrics including contrast, SNR, and CNR
when compared to the calculated image. The DNN approach
improves computational speed by 3.4x compared to the offline
implementation. The generalizability of this network across

different tissue and transducer types is promising for the use
of deep learning for coherence estimation in multiple areas of
ultrasound imaging where coherence information is required.
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