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Abstract—Ultrasound elasticity imaging in soft tissue with
acoustic radiation force requires extracting displacement infor-
mation, typically on the order of several microns, from raw
data. In this work, we implement a fully convolutional neural
network for ultrasound displacement estimation. We present a
novel method for generating ultrasound training data, in which
virtual displacement volumes are created with a combination
of randomly-seeded ellipsoids. Network performance was tested
on the virtual displacement volumes as well as an experimental
phantom dataset and human in vivo prostate data. In simulated
and phantom data, the proposed neural network accurately
reconstructed the ARFI displacements, performing similarly to
a conventional phase-shift displacement estimation algorithm.
Application of the trained network to in vivo prostate data
enabled the visualization of the prostatic urethra and peripheral
zone.

I. INTRODUCTION

Acoustic radiation force impulse (ARFI) imaging uses fo-
cused ultrasound to generate displacement magnitudes of sev-
eral microns within tissue [1]. These displacements within the
region of excitation are subsequently tracked with ultrasound,
with stiffer tissues expected to have lower displacements. The
efficacy of ARFI imaging has been demonstrated in several
clinical applications, including cardiac, breast, and prostate
imaging [2]–[4].

In ARFI imaging, 1-D in-phase and quadrature (I/Q) data
are obtained before and after the induced displacements, and
phase-shift autocorrelation techniques are commonly used to
extract the displacement magnitudes [5]. These techniques
compute the phase difference between two timesteps of interest
to estimate the displacements. Repeated transmits across the
field of view are used to build up a 2-D displacement image.

Machine learning methods have recently gained traction in
many fields of imaging and image processing. To determine
whether a neural network could learn the mapping function
needed to extract displacement information from pairs of I/Q
data before and after ARFI displacements, this study explored
the feasibility of using a deep convolutional neural network
(CNN) as an alternative to phase-shift estimators for estimating
ARFI micron-level displacements.

Recent work in the literature has explored the use of deep
learning for strain elastography applications. Strain elastog-
raphy, which is another technique in ultrasound elastography,
involves using the transducer to physically compress the tissue
by several millimeters, before computing the strain to evaluate
the tissue stiffness [6], [7]. Kibria and Rivaz used a neural

network based on optical flow motion estimation for strain
imaging [8]. Wu et al. also used a deep neural network to
estimate strain for strain elastography applications [9].

The displacement estimation challenges encountered in
ARFI imaging, where the displacements are orders of mag-
nitude smaller (micron-level displacement magnitudes), are
distinct from those encountered in strain imaging [5]. To our
knowledge, this is the first study exploring the use of deep
learning for the estimation of ARFI displacements.

Here, we introduce a novel method for generating training
data in order to have a sufficiently large dataset to train the
neural network. The performance of the network is evaluated
in simulated, phantom, and in vivo human prostate data and
compared with a conventional phase-shift estimator.

II. METHODS

A. Training Data and Preprocessing

Simulated ultrasound data with corresponding ground-truth
displacement labels were used to train the neural network.
The training dataset is limited to simulated data, and not
experimental ARFI acquisitions, since the true underlying
displacements are known only in a simulation setting.

First, synthetic displacement fields were generated by cre-
ating 3-D volumes consisting of 150 summed ellipsoids with
random size, orientation, location, and amplitude inside the
volume. A 3-D Gaussian low pass filter with a standard devia-
tion of 0.15 mm in each dimension was applied in MATLAB to
prevent unrealistically sudden changes in displacement within
the volume. Figure 1 shows an example of a displacement field
generated from a single random seed.

Field II was used to place subresolution scatterers in a
field [10], [11]. These scatterers were displaced by a given
magnitude based on the 3-D displacement volumes that were
generated as described previously. The software was then used
to model the Siemens 12L4 ultrasound transducer (Siemens
Healthcare, Mountain View, CA) to track the scatterers be-
fore and after the displacements were applied. In order to
approximate the data acquired by an ultrasound scanner, the
resulting raw simulated radiofrequency data were demodulated
to in-phase and quadrature (I/Q) baseband frequency, and
down-sampled to 5 MHz sampling frequency. The down-
sampled data were then re-upsampled to 25 MHz for more
precise localization of the displacements, which is a step
that is typically performed prior to conventional displacement
estimation [5].
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Fig. 1: Example of a synthetic 3-D displacement field gen-
erated by summing ellipsoids of random size, orientation,
location, and amplitude. These displacement fields were used
to displace scatterers and simulate ultrasonic tracking in Field
II to produce in-phase and quadrature (I/Q) data.

The ground truth displacement values were extracted from
the center line of the virtual displacement volume, at lateral
position 0 and elevation position 0. Figure 2 shows an example
of the ground-truth displacements for one volume. Note that
the displacement magnitudes are similar to the magnitudes
typically expected in ARFI imaging applications, and the
applied 3-D Gaussian spatial filter generates subtle gradients
in the displacements.

Because the amplitude of the simulated Field II data is
somewhat arbitrary (on the order of 10−21 for the simulations
in this study), the data were normalized such that each A-
line in the simulated data was zero-mean with unit standard
deviation. This preprocessing step helps to stabilize the learn-
ing process by facilitating the weight update process during
training.

In total, 30,000 different synthetic displacement fields were
generated and tracked in Field II. For each sample, the two
sets of I/Q data (before and after the displacements) were used
as the input to the network, and the ground truth displacements
through depth were used as the output to be reconstructed. The
neural network was trained on 26,000 sets of these data, and
2,000 sets each were designated as validation and test datasets
to evaluate the performance of the network.

B. Network Architecture and Training

Figure 2 shows a diagram of the neural network architecture.
The input to the network is a M×1200×2×2 matrix, where
M is the minibatch size (set to 75), 1200 is the number
of depth samples, and the last two dimensions specify the
time step (before or after the applied displacements) and I/Q

Fig. 2: Example of a ground-truth displacement label, gener-
ated by taking the center line through depth in the correspond-
ing 3-D displacement field.

channel, respectively. The output is a vector of length 1200,
corresponding to the displacement data through depth.

The data are then input into a series of convolutional and
max pooling layers, with the number of features increasing
with each convolutional layer due to the increasing complexity
being represented. After four sets of convolutional layers (3×3
filter size) with 2×1 max pooling, a series of transposed
convolutional layers are used to build the image back up to
a height of 1200 samples. A final convolutional layer is used
to collapse the last two dimensions to produce a 1-D output
vector.

The L1 loss, or mean absolute error, was used to train
the network and evaluate performance. The estimated dis-
placements were subtracted element-wise from the ground
truth displacements and the mean absolute difference across
the entire minibatch was calculated. A minibatch size of 75
was used for training, with the ADAM (adaptive moment
estimation) optimization algorithm and an initial learning rate
of 0.001.

The network weights were initialized using the approach
described by He et al., in which the variance of nodes in a
layer is 2.0/n where n is the number of units in the previous
layer [12]. This initialization was derived specifically for
ReLU activation functions, which are used in this architecture,
and prevents an exploding variance value as the number of
inputs grows.

The fully convolutional architecture, without any fully
connected layers, reduces the number of parameters in the
model and is appropriate for this task since the displacement
information is encoded locally (i.e., a fully connected layer
would not be needed to connect distant regions of the image
together).

To evaluate the displacement estimation performance of
the neural network, the I/Q data were also processed using
Loupas’s algorithm, a conventional phase-shift displacement
estimator based on a 2-D autocorrelation algorithm [5], [14].
A 1.5-wavelength kernel was used.

C. Experimental Data Acquisition

Phantom and in vivo prostate data were acquired using a
Siemens 12L4 linear side-fire transducer on a Siemens SC2000
scanner. For an extended pushing depth of field, three focal
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Fig. 3: Diagram of the neural network architecture. The input size is M ×1200×2×2, where M is the minibatch size, 1200 is
the number of depth samples, and the last two dimensions specify the time step and I/Q data channel. A series of convolutional
and max pooling layers are used, followed by a series of transposed convolutional layers to build the image size back up to
1200 samples. A final convolutional layer collapses the last two dimensions to produce a 1-D displacement output vector.

Fig. 4: Displacement estimation results for simulated data
generated from synthetic 3-D displacement field.

Fig. 5: Displacement estimation results for experimental data
acquired in a phantom.

depths were used for each radiation force excitation: 30 mm,
22.5 mm, and 15 mm [13]. The track transmit beam was
focused at 60 mm in an F/3 configuration with dynamic
receive focusing, and eighty-two push beams were laterally
transmitted across the aperture to produce a 2-D imaging
plane. The phantom was a custom CIRS elastic phantom
(Norfolk, VA) containing a stiff spherical inclusion with a

Fig. 6: Displacement estimation results for experimental data
acquired in a phantom (RMS difference = 0.40 µm)

diameter of 10 mm.
In an institutional review board-approved study, prostate

data were obtained in men before they underwent a radical
prostatectomy procedure [4]. The same ARFI sequence de-
scribed above was used, and for each subject, a 3-D prostate
data volume was populated by rotating the side-fire transducer
in 1 degree increments in elevation using a mechanical rotation
stage with an optical encoder to track the trajectory of the
transducer.

III. RESULTS AND DISCUSSION

Figure 4 shows displacement estimation results in a sim-
ulated dataset (i.e., tracked data from one of the random
3-D displacement fields in the test dataset). The ground-
truth displacements based on the central line of the displace-
ment field are shown in black, while the CNN-estimated
dipslacements and Loupas-estimated displacements are shown
in red and blue, respectively. Both the neural network and
Loupas’s algorithm were able to reconstruct the displacements
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Fig. 7: Coronal in vivo prostate ARFI image obtained using
the neural network. The green arrow indicates the prostatic
urethra, while the yellow arrow points to the peripheral zone
of the prostate.

from the simulated I/Q data. The root mean squared error
(RMSE) between the CNN displacements and ground truth
was 0.54 µm, while the RMSE was 0.61 µm for the Loupas
displacements.

Deviations from the ground-truth displacements in Figure
4 are likely due to an averaging effect of the imaging point
spread function (”shearing”) [15]. In other words, scatterer
displacements are inhomogeneous within the ultrasound track
beam and the different displacements are averaged together in
the raw ultrasound data, which makes it extremely challenging
to determine the true displacement of the scatterers along the
central axis.

The neural network generalized to experimental phantom
data, as shown in Figure 5. Again, the CNN-estimated dis-
placements and Loupas-estimated displacements are shown
in red and blue, respectively, and there was no ground-truth
for comparison since this was an experimental acquisition.
The root mean squared difference between the CNN dis-
placements and Loupas-estimated was 0.24 µm, indicating
very concordant estimates. Figure 6 shows images from the
same experimental phantom data, where the stiff spherical
inclusion is visualized as a circular region of low displacement.
Again, the convolutional neural network and Loupas produce
consistent displacement images (RMS difference = 0.40 µm).

Figure 7 shows results of applying the convolutional neural
network displacement estimator to a human prostate dataset.
The image shows a scan-converted coronal plane from the 3-D
ARFI volume. Prostate anatomy is clearly visualized in this
ARFI image: the green arrow indicates the prostatic urethra,
while the yellow arrow points to the peripheral zone of the
prostate.

IV. CONCLUSIONS

In this study, a fully convolutional neural network was
trained to extract ARFI small displacements from ultrasound
data, using a novel method for generating synthetic 3-D

displacement volumes that were tracked in simulations to
produce the training dataset. In simulated data, the network
accurately reconstructed the ground-truth displacements. The
trained network generalized to experimentally-acquired phan-
tom data, enabling the visualization of a stiff spherical inclu-
sion contained within an elastic phantom. Using the neural
network in human in vivo prostate data, the peripheral zone
and urethra were well-visualized.

ACKNOWLEDGMENTS

This work was supported by NIH grant R01-CA142824 and
DOD PCRP grant W81XWH-16-1-0653. The authors thank
Siemens Medical Solutions USA, Ultrasound Division for in-
kind and technical support and Ned Danieley for computer
system administration.

REFERENCES

[1] J. Doherty, G. E. Trahey, K. . Nightingale, and M. L. Palmeri, “Acoustic
radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans.
Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 4, pp. 685–701, Apr.
2013.

[2] P. Hollender et al., “Intracardiac acoustic radiation force impulse (ARFI)
and shear wave imaging in pigs with focal infarctions,” IEEE Trans.
Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 8, pp. 1669–1682, Aug.
2013.

[3] S.-D. Wang et al., “Differential diagnostic performance of acoustic
radiation force impulse imaging in small (20 mm) breast cancers: is
it valuable?” Sci. Rep., vol. 7, no. 8650, 2017.

[4] M. L. Palmeri et al., “Identifying clinically significant prostate cancers
using 3-D in vivo acoustic radiation force impulse imaging with whole-
mount histology validation,” Ultrasound Med. Biol., vol. 42, no. 6, pp.
1251–1262, June 2016.

[5] G. F. Pinton, J. J. Dahl, and G. E. Trahey, “Rapid tracking of small
displacements with ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq.
Control, vol. 53, no. 6, pp. 1103–1117, June 2006.

[6] P. N. Wells and H. D. Liang, “Medical ultrasound: imaging of soft tissue
strain and elasticity,” J. R. Soc. Interface, vol. 8, no. 64, pp. 1521–1549,
Nov. 2011.

[7] R. M. S. Sigrist et al., “Ultrasound elastography: review of techniques
and clinical applications,” Theranostics, vol. 7, no. 5, pp. 1303–1329,
Mar. 2007.

[8] M. G. Kibria and H. Rivaz, “Global ultrasound elastography using
convolutional neural network,” 21st Med. Image. Comput. Comput.
Assist. Interv., Granada, Spain, Sept. 2018.

[9] S. Wu et al., “Direct reconstruction of ultrasound elastography using an
end-to-end network,” 21st Med. Image. Comput. Comput. Assist. Interv.,
Granada, Spain, Sept. 2018.

[10] J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med.
Bio. Eng. Comput., vol. 34, no. 1, pp. 351–353, 1996.

[11] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers”, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, no. 2, pp. 262–267,
Mar. 1992.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on ImageNet classification,” Proc.
ICCV, Santiago, Chile, Dec. 2015.

[13] J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new
technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396–409, Apr. 2004.

[14] T. Loupas, J. T. Powers, and R. W. Gill, “An axial velocity estimator for
ultrasound blood flow imaging, based on a full evaluation of the Doppler
equation by means of a two-dimensional autocorrelation approach,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, no. 4, pp.
672–688, July 1995.

[15] M. L. Rosenzweig, S. A. McAleavey, Gregg E. Trahey, and K. R.
Nightingale, “Ultrasonic tracking of acoustic radiation force-induced dis-
placements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr.
Freq. Control, vol. 53, no. 7, pp. 1300–1313, Jul. 2006.

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

MoA10.2


