
A global strain estimation algorithm for non-invasive 
vascular ultrasound elastography 

Hongliang Li1,2, Jonathan Porée1,2, Boris Chayer1, Marie-Hélène Roy Cardinal1, Guy Cloutier1,2,3  

1Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, QC, Canada;  

2Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada;  

3Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada. 

Abstract— Most strain estimation algorithms are window-
based. Within a calculation window, cross-correlation or affine 
estimations are performed. However, there is always a trade-off 
between the window size, overlap and computation efficiency. We 
propose a parameterized affine model to estimate pixel-wise strain 
globally within the framework of the Horn-Schunck optical flow 
(OF) estimation, which enables to derive a global strain field 
efficiently without multiple windowed calculations. In addition, 
properties of the global pixel-wise estimation provide higher strain 
imaging resolution. Specifically, global strain fields were 
parameterized with discrete cosine transform (DCT) descriptions. 
A cost function including an OF constancy term, a smoothness 
constrain and a nearly incompressibility term was minimized to 
derive affine strain components (axial and lateral strains and 
shears), from which principal strains were determined. For the 
simulation study, the proposed method provided less estimation 
errors than the window-based Lagrangian speckle model 
estimator (LSME). The computation time with the proposed 
method was also reduced by more than 4 times compared with the 
LSME. For in vitro experiments, the proposed method was found 
to be able to detect a 1 mm hard inclusion.  

Keywords—optical flow, vascular ultrasound elastography, high 
resolution, sparse model 

I. INTRODUCTION 
Most strain estimation algorithms are window-based. Within 

a calculation window, cross-correlation [1-3] or affine [4-6] 
estimations are performed. Specifically, consecutive images are 
divided into overlapping windows. Assuming that motions of 
pixels within a window are uniform, window-based methods 
locally derive mean displacements and/or strains within that 
window. However, there is always a trade-off between window 
size, overlap and computation efficiency. For a given window 
size, a smaller overlap gives higher computation efficiency but 
a lower strain imaging resolution. Although a higher overlap 
results in a higher resolution, it would reduce computation 
efficiency and introduce worm artifact filtering [7].  

An alternative way is to globally estimate pixel-wise 
motions in a region of interest (ROI) instead of using 
overlapping windows. Some approaches have been developed 
for quasi-static elastography [8-14], Doppler vector flow [15], 
myocardial motion tracking [16], [17] and computer vision [18]. 
Ones formulate pixel-based motion estimations as an 
optimization problem where a cost function incorporating a data 
term and a regularization term is minimized. However, this 
usually requires to optimize iteratively a cost function until 
convergence, which also impacts computation time. Moreover, 
these models only consider displacement or velocity fields and 
do not estimate strain directly. Additional spatial derivative is 
required to obtain strain. Such gradient operation enhances the 
variance of strain estimations when high frequency 
displacement noise is encountered. To our knowledge, a pixel-
wise vascular strain estimator with an affine model considering 
all strain components without spatial derivatives on 
displacements has not yet been proposed. 

In this study, we propose a parameterized affine model to 
estimate pixel-wise strain globally within the framework of the 
Horn-Schunck optical flow (OF) estimation, which enables to 
derive a global strain field efficiently without multiple 
windowed calculations. 

II. ALGORITHM DESCRIPTION 

A. Problem formulation  
The proposed algorithm is within the framework of the 

Horn-Schunck (HS) optical flow method. A cost function 
incorporating a data term, a smoothness constraint and a nearly 
incompressibility constraint is minimized to derive motion 
fields, 
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The first term in (1) is from the optical flow constraint 
equation, where 𝑈𝑈��⃑ = �𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦�  is the displacement vector 
incorporating lateral displacement 𝑈𝑈𝑥𝑥  and axial displacement 
𝑈𝑈𝑦𝑦, respectively, 𝐼𝐼 represents the image intensity, 𝐼𝐼𝑡𝑡 denotes the 
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temporal gradient of the image intensity, and ‖⋅‖2 stands for L2 
norm. The second term is a two-order smoothness constraint to 
enforce the smoothness of the divergence and curl of the 
displacement field [19], [20], where ∇ ∙ 𝑈𝑈��⃑ = 𝜕𝜕𝑈𝑈𝑥𝑥

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝑈𝑈𝑦𝑦

𝜕𝜕𝑦𝑦
, ∇ ×

𝑈𝑈��⃑ = 𝜕𝜕𝑈𝑈𝑦𝑦
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝑈𝑈𝑥𝑥
𝜕𝜕𝑦𝑦

 are the divergence and curl of the displacement 
field, respectively, grad(∙) is the gradient operator, and 𝜆𝜆𝑠𝑠 is a 
regularization parameter to modulate the influence of the 
smoothness constraint. Since human arteries can be considered 
as nearly incompressible [21], we added a nearly 
incompressibility constraint in (1) as the third term. Here, 𝜆𝜆𝑖𝑖 is 
a regularization parameter to control the influence of the nearly 
incompressibility constraint. Similar incompressibility 
assumption has been used to improve the quality of strain 
estimations in the field of ultrasound strain imaging [5], [6], 
[22]. 

B. Regularized least squares estimation 
Instead of solving the optimization problem of (1) using an 

iterative strategy as in the HS algorithm, we parameterized the 
displacement field using discrete cosine transform (DCT), then 
solved strain fields using a least squares method. Specifically, 
the displacement vector 𝑈𝑈��⃑  of a pixel in an image of size 𝑀𝑀 × 𝑁𝑁 
can be expressed with a linear combination of type-II discrete 
cosine basis functions as  

 𝑈𝑈��⃑ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)𝑐𝑐, (2) 

where {𝐵𝐵}𝑀𝑀𝑡𝑡𝑛𝑛+𝑚𝑚 = cos(𝑘𝑘𝑥𝑥𝑚𝑚(2𝑥𝑥 + 1)) cos(𝑘𝑘𝑦𝑦𝑛𝑛(2𝑦𝑦 + 1)) 
denotes the DCT basis function vector with length 𝑀𝑀𝑡𝑡𝑁𝑁𝑡𝑡, 𝑘𝑘𝑥𝑥𝑚𝑚 =
𝑚𝑚
2𝑀𝑀
𝜋𝜋 , 𝑘𝑘𝑦𝑦𝑛𝑛 = 𝑛𝑛

2𝑁𝑁
𝜋𝜋 , 𝑐𝑐  represents DCT coefficients vector with 

length 2𝑀𝑀𝑡𝑡𝑁𝑁𝑡𝑡, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∙) defines a diagonal matrix, 𝑀𝑀𝑡𝑡 ,𝑁𝑁𝑡𝑡 stands 
for the size of the truncated discrete cosine coefficient (i.e., 
𝑀𝑀𝑡𝑡 ≤ 𝑀𝑀, 𝑁𝑁𝑡𝑡 ≤ 𝑁𝑁). Section III. C. justifies the choice of 𝑀𝑀𝑡𝑡  and 
𝑁𝑁𝑡𝑡. Putting (2) into (1), minimization of (1) is converted into the 
equation below: 

‖∇𝐼𝐼 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)𝑐𝑐 + 𝐼𝐼𝑡𝑡‖22 + 𝜆𝜆𝑠𝑠(‖grad(∇ ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)𝑐𝑐)‖22 +
‖grad(∇ × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)𝑐𝑐)‖22) + 𝜆𝜆𝑖𝑖‖∇ ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)𝑐𝑐‖22 = 0. (3) 

For a given pixel coordinate, 𝑐𝑐 is the only unknown variable in 
(3). Since 𝑐𝑐 is with 2𝑀𝑀𝑡𝑡𝑁𝑁𝑡𝑡 unknown DCT coefficients, we can 
globally consider all pixels in an image of size 𝑀𝑀 × 𝑁𝑁 to build 
an over-determined linear equation system to solve all DCT 
coefficients: 

 𝑨𝑨𝑐𝑐 = 𝒃𝒃, (4) 

where 𝑨𝑨 = �∇𝑰𝑰 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)�𝑇𝑇�∇𝑰𝑰 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)� + 𝜆𝜆𝑠𝑠grad�∇ ∙
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)�𝑇𝑇grad�∇ ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)� + 𝜆𝜆𝑖𝑖∇ ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)𝑇𝑇∇ ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩) 
and 𝒃𝒃 =  �∇𝑰𝑰 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩)�𝑇𝑇𝑰𝑰𝒕𝒕 , {𝑩𝑩}𝑖𝑖,𝑀𝑀𝑡𝑡𝑛𝑛+𝑚𝑚 = cos(𝑘𝑘𝑥𝑥𝑚𝑚(2𝑥𝑥𝑖𝑖 +
1)) cos(𝑘𝑘𝑦𝑦𝑛𝑛(2𝑦𝑦𝑖𝑖 + 1)), 𝑰𝑰 and 𝑰𝑰𝒕𝒕 represent the image intensities 
and temporal intensity gradients, respectively, of pixels in an 
image with size of 𝑀𝑀 × 𝑁𝑁. 

Once DCT coefficients are estimated, 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦 are determined 
using (2). Accordingly, strain components are represented by 

𝑆𝑆𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑈𝑈𝑥𝑥
𝜕𝜕𝑥𝑥

, 𝑆𝑆𝑥𝑥𝑦𝑦 = 𝜕𝜕𝑈𝑈𝑥𝑥
𝜕𝜕𝑦𝑦

, 𝑆𝑆𝑦𝑦𝑦𝑦 = 𝜕𝜕𝑈𝑈𝑦𝑦
𝜕𝜕𝑦𝑦

, 𝑆𝑆𝑦𝑦𝑥𝑥 = 𝜕𝜕𝑈𝑈𝑦𝑦
𝜕𝜕𝑥𝑥

, where 𝑆𝑆𝑥𝑥𝑥𝑥 , 𝑆𝑆𝑥𝑥𝑦𝑦 , 
𝑆𝑆𝑦𝑦𝑦𝑦 , 𝑆𝑆𝑦𝑦𝑥𝑥  are lateral strain, lateral shear, axial strain and axial 
shear, respectively. Finally, the Cartesian strain components 
were combined and represented as principal minor and major 
strain tensors, 𝜀𝜀𝑚𝑚𝑖𝑖𝑛𝑛, 𝜀𝜀𝑚𝑚𝑚𝑚𝑥𝑥: 

 𝜀𝜀𝑚𝑚𝑖𝑖𝑛𝑛,𝑚𝑚𝑚𝑚𝑥𝑥 =  𝑆𝑆𝑥𝑥𝑥𝑥+𝑆𝑆𝑦𝑦𝑦𝑦
2
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2

�
2
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�
2

. (5) 

III. SIMULATIONS AND EXPERIMENTS 

A. Simulations 
A carotid artery model was created using COMSOL 

Multiphysics (Structural Mechanics Module, version 3.5, 
COMSOL, France). A soft necrotic core and four hard calcified 
inclusions were embedded in a medium mimicking a plaque. 
Displacements and strains of the vessel wall were computed 
using the finite element method (FEM). The ultrasound 
simulation program Field II [23] was used to obtain plane wave 
radiofrequency (RF) data considering 21 emission angles. The 
L14-5/38 linear array probe (Ultrasonix Medical Corporation, 
Richmond, BC, Canada) was simulated with a 7.2 MHz center 
frequency and a sampling rate of 40 MHz. RF data were 
beamformed using the delay-and-sum algorithm [24]. White 
Gaussian noise was added into beamformed images to make 
them more realistic with signal-to-noise ratios (SNR) of 20 dB. 

The strain components were computed over consecutive 
frames from the simulated image sequence. The largest 
cumulated strain map as the final elastogram was determined 
using (5). To evaluate elastograms, the normalized root-mean-
square-error (NRMSE) was used: 

  𝑁𝑁𝑁𝑁𝑀𝑀𝑆𝑆𝑁𝑁 =
�∑ (𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−𝑟𝑟𝑒𝑒𝑡𝑡𝑖𝑖)2

𝑁𝑁
𝑖𝑖=1

𝑁𝑁

𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥−𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚
, (6) 

where N is the number of pixels in an elastogram, 𝑟𝑟𝑟𝑟𝑟𝑟 is the 
ground truth values, and 𝑟𝑟𝑒𝑒𝑒𝑒 is the estimated values. 

B. In vitro experiments  
In vitro data from a soft phantom with a hard inclusion was 

used to evaluate the strain image resolution of the proposed 
algorithm. The soft background was made with 1% agar 
(A9799, Sigma–Aldrich Chemical, St Louis, MO), 4% gelatin 
(G2500, Sigma–Aldrich Chemical) and 95% distilled water. The 
hard inclusion of 1 mm was made with 15% polyvinyl alcohol, 
3% cellulose particles (Sigmacell, type 5504, Sigma Chemical), 
and 82% distilled water that underwent 6 freeze-thaw-cycles. 

External periodic vibrations were launched on the top of the 
phantom to induce axial compressions. RF data were acquired 
using a Sonix Touch ultrasonic system (Ultrasonix Medical 
Corporation, Richmond, BC, Canada) equipped with a L14-5/38 
linear array. The same post-processing as considered in the 
simulation study was used to beamform plane wave data.  

C. Parameters selection 
To decide on values of 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑖𝑖, we tested different pairs of 

these two parameters using simulation data. The chosen 
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parameter pair, 𝜆𝜆𝑠𝑠 = 0.05 , 𝜆𝜆𝑖𝑖 = 0.6 , provided the least 
NRMSE. 

The thickness of the simulated carotid artery wall with a 
plaque was smaller than 3 mm. Thus, we determined the number 
of DCT coefficients, 𝑀𝑀𝑡𝑡 or 𝑁𝑁𝑡𝑡, by the Cartesian grid resolution 
(lateral or axial)  × image size (lateral 𝑀𝑀 or axial 𝑁𝑁) / 1.5 mm to 
limit the minimum wavelength of the cosine basis function to 
1.5 mm. The less DCT coefficients allowed the implementation 
of a least squares strategy as in (4). It also reduced the matrix 
size in (4) from 2𝑀𝑀𝑁𝑁  to 2𝑀𝑀𝑡𝑡𝑁𝑁𝑡𝑡 , which reduced the 
computational complexity compared with a reconstruction with 
all DCT coefficients. 

IV. RESULTS 

A. The simulation study 
Figure 1 shows elastograms of a simulated vascular 

phantom. The LSME estimator of [5], [6] was applied to 
compare with the proposed algorithm. The window parameters 
of the LSME were set to 1.0 mm × 1.0 mm window size and 
80% overlap in axial and lateral directions. In the temporal 
direction, the time-ensemble number was 8 with 90% time 
overlap. The NRMSEs of principal minor strain maps with the 
LSME (fig. 1(c)) and proposed algorithm (fig. 1(e)) are 8.5% 
and 6.8%, respectively. For the principal major strain maps with 
the LSME and proposed algorithm, the NRMSEs are 9.6% and 
7.0 %, respectively. Computation time with the LSME was 13.1 
sec/frame, while the proposed method reduced speed by more 
than 4 times to 3.0 sec/frame. 

 
Fig. 1. Principal strain maps of a simulated vascular phantom with a soft 
inclusion and four hard inclusions. (a), (b) Ground truth. (c), (d) Principal strain 
maps with the LSME. (e), (f) Principal strain maps with the proposed method.  

B. The in vitro experiment 
Figure 2 presents results for imaging resolution test. The 

window overlap of the LSME was set to 99% to achieve pixel-
wise image resolution. As seen in the axial strain map with the 
LSME (fig. 2(b)), worm artifacts attributed to correlation noise 
patterns due to a large overlap were noticed. On the other hand, 
the proposed method avoided these artifacts and allowed to 
detect a 1 mm hard inclusion where the LSME failed. 

 
Fig. 2.  (a) A soft phantom with a hard inclusion of 1 mm. (b) Axial strain with 
the LSME. (c) Axial strain with the proposed method. 

V. CONCLUSION 
In this paper, the proposed method provided more accurate 

strain estimations at high spatial resolution as well as 
computation efficiency. With simulation data, the proposed 
method gave less NRMSEs than with the LSME method. The 
computation time with the proposed method was also reduced 
by more than 4 times compared with the LSME. For the in vitro 
experiment, the proposed method avoided worm artifacts of 
window-based approaches and could detect a 1 mm hard 
inclusion.  
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