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Abstract—Shear wave elasticity image quality can be degraded
by poor signal-to-noise ratio or spatial resolution due to low shear
wave amplitudes and reconstruction kernel size. A framework is
presented for incorporating additional information about relative
stiffness, based on the on-axis ARFI displacement data, for en-
hanced shear wave speed reconstruction. Using Bayes’ theorem, a
prior distribution describing the expected shear wave speed based
on local displacement magnitudes is combined with a likelihood
function, which describes the estimated speed based on the
tracked shear wave data. In a phantom, the Bayesian estimator
increased range of reconstructed depths by 55% compared to a
conventional cross-correlation SWEI method, and decreased SWS
bias compared to the ARFI-only reconstruction. The Bayesian
estimator also improved visualization of in vivo prostate anatomy
and prostate cancer.

I. INTRODUCTION

Tissue stiffness, which is often correlated with disease state,
can be noninvasively characterized with ultrasound [1]. In
shear wave elasticity imaging (SWEI), the propagation speed
of shear waves created with a radiation force excitation is
quantitatively related to the shear modulus [2]. The accuracy
of shear wave speed reconstruction is limited in regions where
the shear wave amplitudes are low, such as a very stiff
material or outside the depth of field of the push excitation [3].
Furthermore, with time-of-flight estimation methods, the shear
wave speed is computed over a region that is assumed to
be homogeneous. The size of the reconstruction kernel can
introduce artifacts or limit the spatial resolution of the resulting
image [4].

On the other hand, acoustic radiation force impulse (ARFI)
imaging tracks the on-axis displacement magnitudes within the
region of excitation, and a 2-D displacement map is created
by laterally translating the push excitations across the aperture.
While ARFI only provides a measure of relative stiffness, it
typically has higher resolution than SWEI, since it does not
require a time-of-flight reconstruction kernel [5]. Additionally,
ARFI often has improved penetration compared to SWEI,
resulting from higher signal amplitudes within the region of
excitation.

A previous study examined the use of a Bayesian model for
reducing noise in SWEI images by using a prior distribution
that enforced a spatial continuity constraint [6]. This work
demonstrated reductions in the bias and variance of shear wave
speed estimates compared to a conventional linear regression-
based estimator. However, since the only additional informa-
tion contained in the prior were the adjacent shear wave speed
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estimates, this model was not designed to preserve spatial
resolution or increase penetration depth in the reconstructed
SWEI image.

In this work, a Bayesian framework is presented for en-
hancing the quality of shear wave elasticity images using a
prior based on the on-axis ARFI displacement. The method is
evaluated in phantom and in vivo prostate data obtained with a
combined ARFI/SWEI sequence, and the results are compared
to a conventional cross-correlation SWEI estimator.

II. METHODS
A. Theory

Bayes’ theorem can be expressed as
P(es [ ) o< Pz | cs) - P(cs), €9)

where P(c, | ) is the posterior probability density function
(PDF) of the shear wave speed cs given the observed shear
wave velocity data . The prior PDF P(c;) incorporates prior
knowledge about the shear wave speed. In this model, P(c;)
is constructed from estimates of the on-axis displacements
and shear wave speeds from the local neighborhood around
a given pixel. P(x | c;) is the likelihood function which gives
the probability of observing the shear wave data, assuming a
certain shear wave speed c,.

The objective is to determine the value of ¢, that maximizes
the posterior PDF. Since the logarithm is a strictly increasing
function, it is often more computationally efficient to rewrite
(1) in the log domain:

In(P(cs | z)) ox In(P(x | cs)) + In(P(cs)). (2)

To formulate the prior PDF, the material within a given
local reconstruction kernel is assumed to be linear, elastic,
homogeneous, and isotropic. Given these assumptions, the
shear wave speed cs can be mathematically related to the
Young’s modulus £, along with the density p and the Poisson’s

ratio v:
FE

21+v)

With further assumptions of incompressibility (v = 0.5) and
a density of 1 g/cm?, this equation simplifies to E = 3c2.
The on-axis displacement u is assumed to be inversely
proportional to the stiffness after appropriate depth-dependent
gain is applied to account for spatial gradients in the applied
radiation force due to focusing and attenuation [5]. This
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inverse relation between displacement and elastic modulus and
the quadratic relation between shear wave speed and modulus
leads to the following equation relating shear wave speed and

displacement:
K
<=7 “)
where K is a constant that is theoretically valid for all pairs
of shear wave speed and displacement values in the image. In
practice, to reduce the influence of noisy pixels in the image,
K is estimated from the median shear wave speed estimate and
median ARFI displacement after discarding pairs for which the
correlation coefficient is less than 0.80.
With these relations, the log-prior for a given pixel was
formulated as

In(Ples,)) = - lw ( - j;) +

2
§ : Uj
wj | Csq — Cs]- uf .
jEB 0

In this equation, c,, is the shear wave speed estimate at
the location of interest, while Cs; denotes shear wave speed
estimates at locations in a local neighborhood B. Similar
notation is used for the displacement at the pixel ug and
local displacements u;. K is the estimated conversion factor
between shear wave speed and displacement, and wy and w;
are normalized weights on the local estimates based on the
correlation coefficient, used to scale the relative contributions
of each term based on confidence in the estimates.

For a given location, the log-likelihood function is con-
structed from the cross-correlation of particle velocity signals
in two dimensions after 3-D directional filtering to remove
reflected wave artifacts [7], [8]. For a more robust estimate
of arrival time, data from multiple push excitations were
combined with a weighted algorithm based on the correlation
coefficients [9].

By using this formulation, a separate probability distribution
of the shear wave speed for each pixel in the image is
obtained. For example, Figure 1 shows likelihood probability
distributions for a series of lateral positions for data obtained in
an elasticity phantom. The phantom contained a stiff inclusion
around 6.4 mm laterally, demonstrated by the higher shear
wave speeds in the figure. Taking the speed with maximum
probability at each location (solid black line in Fig. 1) results
in the maximum likelihood estimate of the shear wave speed.

®)

B. Phantom Data

The data used in this analysis were acquired using a Siemens
SC2000 scanner (Siemens Healthcare, Mountain View, CA)
with an Acuson ER7B linear side-fire probe. The radiation
force excitation used three focal depths at 30 mm, 22.5 mm,
and 15 mm [10]. In-phase and quadrature (I/Q) were obtained
using 16:1 parallel receive, with the four center beams used
to track the on-axis displacement [11]. Six beams on either
side of the excitation were used to track the shear waves, with

Likelihood

Shear wave speed (m/s)

Fig. 1: Example likelihood probability distributions versus
lateral position in a phantom with a 10-mm diameter stiff
inclusion around 6.4 mm laterally. The higher shear wave
speed distributions can be observed in the region of the
inclusion.

0.76 mm between adjacent beams. Eighty-two push excitations
were transmitted across the lateral field of view.

The phantom imaging target was a custom CIRS elastic
phantom (Norfolk, VA) that contained a stiff cylindrical in-
clusion with a diameter of 10 mm and a Young’s modulus of
18 kPa, corresponding to a quoted shear wave speed of 2.45
m/s according to (3). The background had a Young’s modulus
of 8 kPa (quoted speed of 1.63 m/s).

The in vivo human prostate data were obtained using the
same combined ARFI/SWEI sequence described above, in
an institutional review board-approved study [12]. Three-
dimensional prostate ARFI/SWEI volumes were obtained in
men expecting radical prostatectomy by mechanically rotating
the transducer in 1 degree elevational increments using a
rotation stage.

For the ARFI data, displacements were estimated using
Loupas’s algorithm with a 4-wavelength kernel and progres-
sive referencing [13], [14]. Data from the third time step after
the push were used, and depth-dependent gain was applied
using a normalization curve from a homogeneous phantom.

For the SWEI data, velocity profiles through time were
estimated with Loupas’s algorithm applied to consecutive time
steps, again with a 4-wavelength kernel. The data were filtered
with a 2nd-order zero-phase Butterworth filter (1.5 kHz cutoff
frequency), and upsampled by a factor of 5 using spline
interpolation.

Contrast-to-noise ratio (CNR) was computed using the
following equation:

CNR _ ,U/zn - ,U/out ) (6)

/ ~2 2
Oin + Oout

To quantify the range of depths that was able to be recon-
structed with high fidelity, this range was defined as the depths
over which the median shear wave speed, averaged laterally,
remained within five percent of the quoted shear wave speed.
The range was computed in a homogeneous background region
of the phantom. This metric was defined due to the bias in
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Fig. 2: (Left) Conventional cross-correlation-based SWEI reconstruction in a phantom with a stiff inclusion (maximum
likelihood estimation). (Middle) Reconstruction of the SWEI image using only the on-axis displacement information, equivalent
to taking the square root of the reciprocal of the ARFI displacements. (Right) Result of using the Bayesian estimator to combine

the on- and off-axis information.

speeds often seen at very shallow or very deep depths, where
the signal-to-noise ratio is low.

III. RESULTS AND DISCUSSION

Figure 2 shows reconstructed images of the phantom con-
taining a stiff inclusion. The left image displays the conven-
tional SWEI reconstruction resulting from taking the maxi-
mum likelihood estimate of the shear wave speed at each pixel.
The mean reconstructed speed in the inclusion was 2.47 + 0.11
m/s, while the mean reconstructed speed in the background
was 1.60 =+ 0.04 m/s. The CNR of the inclusion was calculated
to be 9.13.

The center image shows the on-axis-only reconstruction,
equivalent to taking the square root of the inverse of the
ARFI displacements. The mean reconstructed speed in the
inclusion was 2.23 £ 0.26 m/s, while the mean reconstucted
speed in the background was 1.69 + 0.16 m/s. The CNR of
the inclusion was calculated to be 1.76. Note that the large
difference in CNR is due to the relative amount of noise in
the middle image. However, there are inaccurate shear wave
speed estimates in the SWEI image below 30 mm or above
10 mm due to poor signal-to-noise ratio. On the other hand,
the root inverse ARFI image is much more consistent through
depth, though there is more bias in the estimates.

The right image in Figure 2 shows the result of applying
the Bayesian estimator to combine the SWEI and ARFI data,
also known as the maximum a posteriori estimate. The mean
reconstructed speed in the inclusion was 2.42 + 0.15 m/s,
while the mean reconstucted speed in the background was 1.61
+ 0.07 m/s. The CNR of the inclusion was 4.95; this lower
CNR compared to conventional SWEI is due to increased
variability in the estimates when the ARFI displacement data
are incorporated. However, using this technique resulted in
preservation of the extended range of depths over which
shear wave speeds can be reasonably reconstructed, while
maintaining accuracy in the estimated speeds.
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Fig. 3: (Left) Range of reconstructed depths in phantom
data for conventional SWEI, ARFI-only reconstruction, and
Bayesian estimator. (Right) Degrees of reconstructed SWS
bias in the phantom lesion and background for conventional
SWEI, ARFI-only reconstruction, and Bayesian estimator.

To further quantify these results, the left plot in Figure
3 shows the reconstructed depth of field for each approach
as previously defined. With conventional SWEI, this range
is low (17.8 mm) due to the poor penetration. ARFI has a
much larger range (28.7 mm), and the Bayesian estimator
preserves this large range (29.2 mm). The right plot shows the
magnitude of the bias in shear wave speed estimates. While the
AREFI estimates have a large bias (inclusion 9.0%, background
3.5%), likely due to issues in assumptions regarding the
conversion factor K, both the conventional SWEI (inclusion
0.8%, background 2.0%) and proposed Bayesian estimators
(inclusion 2.0%, background 1.4%) maintain a low bias.

Figure 4 shows results of the Bayesian estimator applied to
one of the subjects in the prostate imaging study. The central
gland of the prostate, indicated by the white arrow, has more
uniform and distinct edges with the Bayesian reconstruction,
along with a more symmetric shape that would be expected
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Fig. 4: (Left) In vivo SWEI image without incorporating ARFI data; penetration depth and contrast are limited. (Right)
Combining ARFI and SWEI increased CNR in the central zone (white arrow) from 0.91 to 1.86 and increased contrast in a

cancerous lesion (green arrow).

for the prostate. The anterior edge of the central zone is shown
more clearly with the Bayesian estimator due to the improved
depth penetration. Combining ARFI and SWEI increased CNR
in the central zone from 0.91 to 1.86 and increased contast in a
histologically-confirmed prostate cancer lesion (green arrow).
The processing time for the Bayesian algorithm is currently
slower than the processing time for conventional SWEI, since
there are the added steps of incorporating the ARFI prior
information and optimization of the cost function. While a
compute cluster was used for parallel processing of the data in
this study, future work will explore more efficient computation
methods, such as pre-calculation of the analytic derivatives to
accelerate the gradient descent optimization process.

IV. CONCLUSIONS

In this study, a novel method for combining on-axis ARFI
displacement data with off-axis shear wave data using Bayes’
theorem was presented. Under specific assumptions, both sets
of data can be related via the elastic modulus of the mate-
rial. This approach yields a high-quality SWEI reconstruction
with improved contrast and depth penetration, compared to a
conventional SWEI approach. This Bayesian estimator was ap-
plied to phantom data, where penetration depth was improved
compared to conventional SWEI, and in vivo data to improve
visualization of prostate cancer and prostate anatomy.
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