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Abstract—Ultrasound is becoming the modality of choice for
everyday medical diagnosis, due to its mobility and decreasing
price. As the availability of ultrasound diagnostic devices for
untrained users grows, appropriate guidance becomes desirable.
This kind of support could be provided by a software agent,
who easily adapts to new conditions, and whose role is to
instruct the user on how to obtain optimal settings of the
imaging system during an examination. In this work, we verified
the feasibility of implementing and training such an agent for
ultrasound, taking the deep reinforcement learning approach.
The tasks it was given were to find the optimal position of the
transducer’s focal point (FP task) and to find an appropriate
scanning plane (PP task). The ultrasound environment consisted
of a linear-array transducer acquiring information from a tissue
phantom with cysts forming an object-of-interest (OOI). The
environment was simulated in the Field-II software. The agent
could perform the following actions: move the position of the
probe to the left/right, move focal depth upwards/downwards,
rotate the probe clockwise/counter-clockwise, or do not move.
Additional noise was applied to the current probe setting. The
only observations the agent received were B-mode frames. The
agent acted according to stochastic policy modeled by a deep
convolutional neural network, and was trained using the vanilla
policy gradient update algorithm. After the training, the agent’s
ability to accurately locate the position of the focal depth and
scanning plane improved. Our preliminary results confirmed that
deep reinforcement learning can be applied to the ultrasound
environment.

Index Terms—ultrasound guidance, reinforcement learning,
deep learning

I. INTRODUCTION

The growing availability of ultrasound devices moves us
towards the possibility to decrease waiting time, and thus
increase the number of examinations crucial to the subject.
However, in most cases tests should be performed by an ex-
perienced radiologist, who may not be available immediately.
For instance, in cardio-oncology [1], [2], it may be desirable
to perform accurate echocardiography for cancerous subjects
before applying a treatment causing cardiotoxicity. In special
cases a non-trained examiner can be guided by a computer
system [3] or an experienced person available remotely [4].
In this work, we seek an automated way of supporting novice
ultrasound users.

Automatic ultrasound guidance could be provided by a
computer agent previously trained by interacting with the
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Fig. 1. The interaction between an agent and an environment.

modality and the subject. Recent developments in the ma-
chine learning field suggests that this kind of agent could
be trained using deep reinforcement learning algorithms. This
approach was already successfully verified in the field of
artificial intelligence and robotics. For example, Mnih et al.
[5] showed that it is possible to train a computer program
to play Atari 2600 computer games with a deep variant
of Q-learning algorithm, by providing only raw pixels and
current score to an agent. Lillicrap et al. [6] experimented
with continuous action space environments, like car driving or
dexterous manipulation. Zhang et al. [7] used Deep Q Network
to train an agent to perform robotic manipulation tasks using
solely camera frames.

In this work we investigate the feasibility of using the
deep reinforcement learning approach in ultrasound guidance.
Here, we train and evaluate an agent on a toy environment as
presented in Figure 2. The agent observes B-mode frame only
and manipulates the current transducer settings. The objective
of the agent is to find and maintain a setting that provides the
best quality of an ultrasound image sequence.

II. METHOD

In the reinforcement learning scenario an agent interacts
with some environment in the following manner: the agent
perceives some observation of the state st of the environment,
acts (performs action at) according to its own inner policy and
receives some numerical reward rt (Figure 1). The agent’s
objective is to maximize its expected cumulative reward (a
return) obtained over one run (an episode) [8], [9].

In this work, we consider an environment model comprised
of a phantom with a simple object of interest inside. An
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Fig. 2. A visualization of the environment. The OOI is composed of 6 balls:
a corpus (the blue ball), a head (the larger red ball at the top of the corpus),
and legs (the smaller 4 red balls with a 90 degree angle between them). An
ultrasound transducer is applied to the top of the phantom (yellow line), and
can change its lateral position, focus depth (yellow cross) and the scanning
plane.

(a) (b) (c) (d)

Fig. 3. Example observations obtained by an agent during one episode of
locating appropriate position of the focal point. At each time step the only
provided observation is an ultrasound image i(st).

ultrasound transducer is placed on the side of the phantom
as presented in Figure 2. The only observation an agent
receives is a B-mode image obtained at current position of the
probe. The only action the agent can perform is to change the
transducer settings: its lateral position, depth of the focal point
and scanning plane rotation. In consequence, the environment
may change its state, and the agent receives a new observation
and reward. The better the new image is (in terms of the
object’s presentation), the greater the reward the agent obtains.
The goal of the agent is to maximize the cumulative quality of
a sequence of B-mode frames obtained over one examination.
In the following subsections, we describe all these concepts
in more detail.

A. Environment

The environment includes a cuboid phantom with an object
inside, as presented in Figure 2. The object is composed of 6
balls, which are positioned and scaled so that they resemble
a corpus, a head and 4 legs. The location of the object in

TABLE I
ENVIRONMENT PARAMETERS

Parameter Value
number of time steps per episode 16
phantom (width, height, depth) (mm) (80, 80, 90)

transducer width (mm) 40

object location (xo, yo, zo) (mm) (0, 0, 0)

object angle αo (mm) 0

transducer initial location (x, y, z) (mm)

(x, 0, 0)

FP: drawn from [−20, 20]

PP: drawn from [−15, 15]

divisible by ∆x

transducer initial angle α (degrees)
FP : 0

PP: drawn from [45, 90]
divisible by ∆α

transducer initial focal depth zd (mm) 10

step size ∆x (mm) 5

rotation angle ∆α (degrees) 15

output image 40× 90 pixels, grayscale
cx FP:drawn from{1, 2},PP:1
cα PP: 1

the phantom is fixed and does not change between episodes
and time steps. A linear transducer is located at the top of the
phantom and can be: shifted by ±∆x millimeters along the
line M = {(x, y, z) : y = 0, z = 0}, rotated ±∆α degrees
around the axis Z = {(x, y, z) : x = 0, y = 0}, and its
focal point can be moved by ±∆z. The transducer cannot be
moved outside the phantom, nor can its focal point. Random
displacements (a noise) of the probe were applied with the
probability pn. An occurrence of the noise in time step t
means that after performing the selected action the transducer
will be moved to left/right ±cx∆x or rotated ±cα∆α degrees
additionally. For details, like the values of the initial state of
the environment, please refer to the Table I.

The only observation the agent receives is a 2D B-mode im-
age (Figure 3). The linear-array transducer and an ultrasound
wave propagation (through the collection of point scatterers)
were simulated in the Field II software [10], [11]. The resultant
radio-frequency echo signal has undergone further processing
comprised of: envelope detection (using Hilbert transform),
log compression, dynamic range adjustment, interpolation to
the output resolution, and a median filter.

In this work, we consider the following two separate tasks:
given the initial (random) state of the environment, find
(1) the appropriate position of the focal point or find (2)
the appropriate scanning plane. For each of these tasks, we
describe below an action space and reward function employed
to train the agent.

1) Find the appropriate Focal Point (FP) Task: the envi-
ronment starts with the transducer randomly located on the
line M . The objective is to find the position of the transducer
and the depth of the focal point, which gives the best quality
image.

In FP task, the action space was discrete and consisted of
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the following 5 operations:
• move the transducer to the left/right ∆x millimeters,
• move the transducer’s focal point depth up/down ∆z =

∆x millimeters,
• do nothing (NOP).
The reward function was equal to the negative L1 distance

between the location of the transducer’s focal point (xt, zt)
and the center of the object (xo,t, zo,t) in step t:

Rt = −(|xt − xo,t|+ |zt − zo,t|) (1)

In other words, the L1 distance between the position of the
focal point and the position of the object’s center was treated as
a measure of image degradation (a cost C(st)): the further the
focal point was from the object, the worse the image obtained.
The objective could thus be formulated as minimizing the
expected cumulative cost, or maximizing its negative version.

2) Find the appropriate Probe’s Plane (PP) Task: the en-
vironment starts with the transducer, randomly rotated around
the axis Z, randomly located on the line M and focused at
the depth of the object’s center. The objective is to find the
position and the scanning plane of the transducer, which gives
the best quality image.

In PP task, the action space was discrete and consisted of
following 5 operations:

• move the transducer to the left/right ∆x millimeters,
• rotate transducer ∆α degrees counter-

clockwise/clockwise,
• do nothing (NOP).
The reward in step t was equal to:

Rt = −(|xt − xo,t|+ |sin(αt − αo,t)|) (2)

B. Agent

A simple model-free, on-policy gradient update algorithm
[9] (a.k.a. Vanilla Policy Gradient) was used to train the agent
to act in the environment and to perform tasks described
in section II-A. The observation i(st) is provided as an
input to the policy π and value V functions, which were
implemented as neural networks with 2D convolution-max
pooling blocks, followed by a fully connected output layer;
actions are sampled from the categorical distribution with
parameters determined by the policy’s neural network output.
Batch normalization was applied after each convolutional layer
[12]. Policy was trained by maximizing expected undiscounted
return, and value function by minimizing mean-squared error
with the discounted sum of rewards [9]. Selected hyperparam-
eters of the training procedure can be found in Table II.

III. RESULTS

The experiment results were averaged over 4 runs with
different random number generator seeds. For both tasks, the
return increased with the number of policy update iterations
(Figure 4). The average distances of the transducer’s focal
point and scanning plane from object’s setting for the PP task
are presented in Figure 5. Both values decreased with time as
expected. Increasing the likelihood of noise impacts the trend

TABLE II
TRAINING HYPERPARAMETERS

Parameter Value
π learning rate 10�4

V learning rate 10�3

GAE λ (see [13])
FP: 0.95
PP: 0.97

discount factor γ 0.99
time steps per epoch 64
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Fig. 4. Average reward after a given number of policy updates (± std. dev.
after each 50 epochs) for (a) FP task (also a negative distance from the the
object) and (b) PP task, for different probabilities of applying the noise. Values
were averaged across 4 runs with different random seeds.

of a learning curve, especially for the PP task, but the agent’s
performance improves with time in all cases. While analyzing
each episode individually we noticed that, in the FP task, the
agent sometimes misses the target depth when moving the
focal point from the top to the bottom (images obtained at
and below the target depth have similar quality). In the PP
task, the agent sometimes rotates the probe in a non-optimal
direction (but still achieves the appropriate plane, due to the
symmetry of the object).

IV. CONCLUSION

In this work, we proposed the deep reinforcement learning
approach for the ultrasound guidance and verified its feasi-
bility on a simple toy problem of improving the quality of
an ultrasound image sequence. The results show that it is
possible to train an agent to complete the task by changing the
transducer setting, basing it only on the current B-mode frame.
The implementation of the ultrasound environment was open-
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Fig. 5. PP task results: (a) a distance from the object’s center and (b) sinus
of the angle between transducer’s and object’s planes. Values were averaged
across 4 runs with different random seeds.

sourced and made available publicly for further experiments
[14].

The approach described in this work can be extended in
the future; here are some thoughts to consider. First, in a
real-world case, the true location of the object of interest
is usually unknown, thus a reward function should not be
based on this information in general. A trained radiologist,
an end user or some pre-trained model could score an image
in non-simulated environments (a quality of an image can
be a subjective term). The possibility to set other imaging
settings/parameters by the agent, could also be investigated.
Our experiments were also limited to a single, simple, on-
policy, vanilla policy gradient algorithm – it would certainly
be worth to evaluate the performance of other reinforcement
learning methods in the ultrasound environment.

REFERENCES

[1] L. Venneri, G. Zoppellaro, and R. S. Khattar, “Cardio-oncology: the
role of advanced echocardiography in cancer patients,” Expert review of
cardiovascular therapy, vol. 16, no. 4, pp. 249–258, 2018.

[2] C. M. Larsen and S. L. Mulvagh, “Cardio-oncology: what you need to
know now for clinical practice and echocardiography,” Echo research
and practice, vol. 4, no. 1, pp. R33–R41, 2017.

[3] A. Yen, A. K. Chaudhry, C. Wang, X. Tang, H. Hong, N. Poilvert, and
D. Liang, “Innovative ultrasound technologies echogps and autoef help
novices perform efficient and accurate echocardiographic monitoring in
cancer patients,” Journal of the American College of Cardiology, vol. 73,
no. 9 Supplement 1, p. 1502, 2019.

[4] W. Conard, “Butterfly network announces the world’s first
augmented reality telemedicine technology,” Globenewswire.
[Online]. Available: https://www.globenewswire.com/news-
release/2018/03/25/1452541/0/en/Butterfly-Network-Announces-the-
World-s-First-Augmented-Reality-Telemedicine-Technology.html

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[7] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv preprint arXiv:1511.03791, 2015.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[9] J. Achiam. (2019) Spinning up in deep reinforcement learning. [Online].
Available: https://spinningup.openai.com/

[10] J. A. Jensen, “Field: A program for simulating ultrasound systems,”
in 10th Nordic Baltic Conference on Biomedical Imaging, vol. 4,
supplement 1, part 1: 351–353. Citeseer, 1996.

[11] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields
from arbitrarily shaped, apodized, and excited ultrasound transducers,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 39, no. 2, pp. 262–267, 1992.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[13] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[14] P. Jarosik. (2019) Reinforcement learning for an ultrasound: source
code repository. [Online]. Available: https://github.com/pjarosik/rlus

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

MoPoS-11.3


