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Abstract—Single plane wave imaging is well-suited to high
frame rate imaging tasks (e.g., ultrasound based robotic track-
ing). However, suboptimal image quality is obtained when limited
to a single plane wave transmission. To address this challenge, we
propose to train deep neural networks (DNNs) as an alternative
to delay-and-sum beamforming followed by segmentation. Our
overall goal is to extract information directly from raw channel
data prior to the application of time delays and to simultane-
ously generate both a segmentation map and an ultrasound B-
mode image of anechoic cysts surrounded by tissue. A network
trained with 17,676 Field II simulations was tested with both
simulated and experimental phantom data sets that were not
included during training (9,108 and 320 images, respectively).
DNN results from simulated and phantom test sets produced
similar dice similarity coefficients (DSC), contrast, tissue signal-
to-noise ratios (SNR), and generalized contrast-to-noise ratios
(GCNR). Similarity is reported as the mean ± standard deviation
of these metrics for simulated and experimental test set results
as follows: 0.92 ± 0.13 and 0.92 ± 0.03 DSC, respectively;
−39.56± 6.41 dB and −35.56± 3.81 dB contrast, respectively;
3.78 ± 1.08 and 4.53 ± 1.23 SNR, respectively; and 1.00 ± 0.01
and 1.00±0.01 GCNR, respectively. Thus, the DNNs successfully
transferred feature representations learned from simulated data
to experimental phantom data, highlighting the promise of this
novel alternative to traditional ultrasound information extraction.

Index Terms—Deep Learning, Neural Network, Fully Convo-
lutional Neural Network, Beamforming, Image Segmentation

I. INTRODUCTION

PLANE wave ultrasound imaging is ideal for ultrasound-
based robotic tracking tasks due to its ability to achieve

frame rates exceeding 18,000 Hz [1]. Ideally, a single plane
wave transmission would provide sufficient image quality, but
due to the presence of significant levels of acoustic clutter, a
single plane wave transmission is often insufficient. Multiple
plane wave transmissions with varying angles are typically
needed for coherent plane wave compounding [2] to improve
image quality, which limits the maximum possible frame rates
of robotic tracking tasks. In addition, for robotic tracking
tasks, the beamformed image is often provided as the input to
an image segmentation algorithm that outputs a segmentation
mask, which is used to command the robot or make a decision.
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Recently, there has been growing interest in applying DNNs
to augment or replace steps of the ultrasound image formation
pipeline [3]–[11]. In this work, we improve our previous
approaches to learning beamforming from single, unfocused
plane wave channel data [5]–[7] by demonstrating the ability
of our deep neural network (DNN) to produce B-mode images
with improved contrast and smoother tissue texture compared
to delay-and-sum beamforming, while concurrently extracting
segmentation information directly from the raw data. We also
introduce a novel method for enhancing simulated delay-and-
sum (DAS) beamformed images using ground truth segmen-
tation masks to produce enhanced beamformed images with
superior contrast for network training. In addition, network
training in this paper is performed in a purely supervised
manner using a fully convolutional neural network (FCNN),
making the network easier and faster to train when compared
to the generative adversarial network (GAN) employed in our
previous paper [7].

II. METHODS

An illustration of the traditional beamforming approach
compared to the proposed network architecture is presented
in Fig. 1. Traditionally, raw ultrasound channel data is beam-
formed, envelope detected, log compressed, and filtered to
produce a delay-and-sum (DAS) beamformed image. This
DAS image then becomes the input to an algorithm that
produces a segmented image for the robot to locate and track
the target. Our goal with the proposed network is to replace the
mathematical component of image formation and segmentation
with a robot input obtained directly from raw ultrasound
channel data. The network architecture was designed based on
U-Net [12], possessing a single encoder adopting the VGG-13
[13] encoder with BatchNorm [14] layers to stabilize training
and speed up convergence, followed by two decoders. One
decoder generates a DNN image trained to match the DAS
image, and the other decoder generates a DNN segmentation
trained to match the true segmentation.

The Field II [15], [16] ultrasound simulator was used
to generate 22,230 simulations of individual anechoic cysts
surrounded by tissue. We employed simulations in our training
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Fig. 1. An illustration of our proposed pipeline. For ultrasound-based robotic tracking tasks, traditionally raw channel data undergoes delay-and-sum
beamforming followed by envelope detection, log compression and filtering to produce an interpretable delay-and-sum (DAS) beamformed image, which
is then passed to a segmentation algorithm producing a segmented image on the basis of which the robot moves. Instead, a fully convolutional neural network
architecture (FCNN) is developed with a single encoder and two decoders that directly outputs a DNN image from one decoder and a DNN segmentation,
trained to match the true segmentation, from the second decoder using the raw channel data from a single plane wave insonification. In this figure, the input
data is in-phase/quadrature (IQ) data presented stacked together as a tensor input, with I as one channel and Q as the other channel.

TABLE I
SIMULATED CYST DATA PARAMETERS

Parameter Range Increment
Radius (r) 2-8 mm 1-2 mm

Speed of Sound (c) 1420-1600 m/s 10 m/s
Lateral position of cyst center (x) -16 mm - 0 mm 2 mm

Axial position of cyst center(z) 40-70 mm 2.5 mm

approach for two primary reasons. First, simulators enable
the generation of large, diverse datasets that are required to
train robust DNNs. Second, for segmentation tasks, simulators
enable the specification of ground truth pixel labels, allowing
one to avoid the expensive and time-consuming step of a
human annotator to provide segmentation labels.

The simulated cyst radius, lateral and axial position, and
speed of sound in the medium were varied using the range
and increment sizes defined in Table I. The values of cyst
radii were specifically 2, 3, 4, 6, and 8 mm. These cysts were
contained within a cuboidal phantom volume located between
an axial depth of 30 mm and 80 mm, with an axial width of
40 mm and an elevational thickness of 7 mm. Each simulation
used a different seed for the random number generator, and
therefore produced a unique speckle realization to model the
diversity expected with real data. A total of 50,000 scatterers
were contained within the simulated phantom to ensure fully
developed speckle.

In each simulation, a single plane wave at normal incidence
was simulated to insonify the region of interest. The simulated
ultrasound probe matched the parameters of the Alpinion L3-8
linear array transducer, and its center was placed at the axial,
lateral, and elevation center of the phantom (i.e., 0 mm, 0
mm, and 0 mm, respectively). The one exception to matching
the real hardware system was a simulated sampling frequency
of 100 MHz (rather than the 40 MHz sampling frequency
of the Alpinion ultrasound scanner) in order to improve the
Field II simulation accuracy [15], [16]. A total of 80% of the
22,230 simulated examples was reserved for training, and the
remaining 20% was used for network testing. As cysts were
purposely simulated to reside on the left side of the phantom
(see Table I), the simulated channel data were flipped, and

samples from the right side of simulated phantom were also
trained and tested without explicitly simulating this possibility.

All input and output examples were normalized to facilitate
training. For the input channel data, the input was normalized
by the maximum absolute value in the input to ensure the
normalized input lies between −1 and 1. The network was
trained with the normalized input.

Channel data from a cross sectional slice of two anechoic
cylinders in a CIRS 054GS phantom located at depths of 40
mm and 70 mm were acquired using an Alpinion L3-8 linear
array ultrasound transducer attached to an Alpinion E-Cube
12R research scanner. Two independent 80-frame sequences
were acquired. The anechoic targets were consistently in the
left or right half of the image for each acquisition sequence,
achieved by manually flipping the ultrasound probe. The
channel data corresponding to each of the 80 frames in
each sequence was flipped from left to right, producing a
dataset consisting of 320 total images in order to test the
generalizability of the trained networks. The ground truth for
this phantom dataset was specified by manually annotating
pixels in the beamformed ultrasound image as cyst or tissue.
When quantitatively evaluating these phantom examples, the
mean result for the two anechoic cysts in the same image is
reported, unless otherwise stated.

The DNN results reported in this paper were trained using
the following baseline settings. The Adam [17] optimizer used
a learning rate of 10−5 for 25 epochs, where one epoch is
defined as one pass over the entire training dataset (i.e., the
entire training dataset is presented to the network once for
training). The mini-batch size for the training dataset was set to
16. Training was parallelized across a set of 4 Tesla P40 GPUs.
The input data format was IQ, with the I and Q components
treated as two separate input feature channels. This training
was performed over a combined dataset consisting of data with
and without an attenuation coefficient of 0.5 dB/cm-MHz.

One known limitation of single plane wave transmissions
is poor image contrast. Fig. 2 shows an example DAS beam-
formed image obtained from a single plane wave insonification
of an anechoic cyst. The cyst is intrinsically anechoic, but the
visualized cyst in the DAS beamformed image is not, as a
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Fig. 2. From left to right, this example shows a simulated DAS beamformed
ultrasound image, the known segmentation of the cyst from surrounding tissue,
and the corresponding enhanced beamformed image.

result of acoustic clutter.
Our goal in using DNNs for ultrasound image formation is

to obtain better quality images than that of DAS images, and
not to simply replicate poor DAS image quality. Toward this
end, the pixel labels obtained from the true segmentation mask
are used to set the pixel values of the anechoic region to zero
while preserving the pixel values of the surrounding tissue,
removing the clutter and restoring the desired true anechoic
appearance of the cyst [18]. All simulated DAS beamformed
images are enhanced as described above, and the enhanced
beamformed images are used to train the DNN.

The DNN was trained to minimize the sum of two losses:
1) Mean Absolute Error (L1Loss) between the predicted

DNN image and the reference enhanced beamformed
image, defined as:

L1Loss(D,E) =
||D − E||1

N
(1)

where D and E are the vectorized images, and N is the
total number of image pixels.

2) Dice Similarity Coefficient Loss (DSCLoss) between the
predicted DNN segmentation and the true segmentation,
defined as:

DSCLoss(X,Y ) = 1− DSC(X,Y ) = 1− 2
|X ∩ Y |
|X|+ |Y |

(2)

where X and Y are the vectorized binary segmentation
masks.

The total network loss was the sum of the above two losses:

Total Loss = L1Loss(D,E) + DSCLoss(X,Y ) (3)

=
||D − E||1

N
+ 1− 2

|X ∩ Y |
|X|+ |Y |

(4)

As observed in our previous work [6], higher DSCs are
achieved with larger cysts compared to smaller cysts. In
addition, small cysts have greater potential to be missed, which
is quantified as a DSC of approximately zero. Based on this
knowledge, we prioritize a fair comparison of the multiple
network parameters, which we define as a minimum DSC
≥ 0.05. Test cases that did not meet this basic criterion were
excluded from the results reported in this paper. Overall, the

network successfully detected the simulated cyst in 4, 274
out of 4, 554 test examples, with all missed cysts being of 2
mm radius. Note that none of the experimental phantom data
met our exclusion criteria, thus all experimental test cases are
included.

Contrast, signal-to-noise ratio (SNR), and generalized
contrast-to-noise ratio (GCNR) [19] of DAS and DNN images
were calculated using the following equations:

Contrast = 20 log10

(
Si

So

)
(5)

where Si and So represent the mean signals inside and outside
the cyst, respectively.

SNR =
So

σo
(6)

where σo is the standard deviation of signals outside the cyst.

GCNR = 1−
1∑

x=0

min
x
{pi(x), po(x)} (7)

where pi(x) and po(x) are the probability mass functions of
the signal inside and outside the cyst, respectively.

III. RESULTS

A. Simulation Results

Fig. 3 shows an example simulated test output. Left to
right, this example shows simulated raw IQ channel data
after applying envelope detection, a DAS beamformed ultra-
sound image, a DNN image produced by our network, the
known segmentation of the cyst from surrounding tissue, the
DNN segmentation predicted by our network, and the DNN
segmentation overlaid on the true segmentation. The DNN
segmentation produces a DSC of 0.98 and the DNN image
produces a contrast of −44.91 dB, an SNR of 3.37, and
a GCNR of 1.00, which is an improvement over the DAS
image contrast of −16.27 dB, SNR of 1.69, and a GCNR
of 0.83. Across the entire test, the DNN produced a mean
± one standard deviation DSC of 0.92 ± 0.13, contrast of
−39.56 ± 6.41 dB, SNR of 3.78 ± 1.08, and GCNR of
1.00± 0.01, superior to DAS with contrast of −14.39± 2.52
dB, SNR of 1.82± 0.34, and GCNR of 0.80± 0.06.

B. Phantom Results

Fig. 4 shows an example phantom test case output. From
left to right, this example shows raw phantom IQ channel
data after applying envelope detection, a DAS beamformed
ultrasound image, a DNN image produced by our network,
the known segmentation of the cyst from surrounding tissue,
the DNN segmentation predicted by our network, and the
DNN segmentation overlaid on the true segmentation. The
DNN segmentation produces a DSC of 0.88 and the DNN
image produces a contrast of −34.77 dB, an SNR of 3.19,
and a GCNR of 0.99, which is an improvement over the
DAS image contrast of −16.05 dB, SNR of 1.90, and a
GCNR of 0.99. Across the entire test set, the DNN produced a
mean ± one standard deviation DSC of 0.92± 0.03, contrast
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Fig. 3. From left to right, this example shows simulated raw IQ channel data after applying envelope detection, a DAS beamformed ultrasound image, a
DNN image produced by our network, the known segmentation of the cyst from surrounding tissue, the DNN segmentation predicted by our network, and an
image with a red transparent overlay of the DNN segmentation over the true segmentation.

Fig. 4. From left to right, this example shows raw phantom IQ channel data after applying envelope detection, a DAS beamformed ultrasound image, a DNN
image produced by our network, the known segmentation of the cyst from surrounding tissue, the DNN segmentation predicted by our network, and an image
with a red transparent overlay of the DNN segmentation over the true segmentation.

of −35.56 ± 3.81 dB, SNR of 4.53 ± 1.23, and GCNR of
1.00± 0.01, superior to DAS with contrast of −14.17± 2.88
dB, SNR of 1.93± 0.12, and GCNR of 0.99± 0.00.

IV. CONCLUSION

This paper highlights our initial succes with using DNNs
to directly extract information from raw single plane wave IQ
channel data prior to the application of any time delays. Re-
sults are used to create high quality images and cyst segmenta-
tion masks from the same input data. The presented approach
is a promising alternative to traditional DAS beamforming
followed by segmentation for high-speed robotic ultrasound
tasks that include detection and tracking of anechoic cysts.

REFERENCES

[1] M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound,”
IEEE TUFFC, vol. 61, no. 1, pp. 102–119, 2014.

[2] R. R. Entrekin, B. A. Porter, H. H. Sillesen, A. D. Wong, P. L. Cooper-
berg, and C. H. Fix, “Real-time spatial compound imaging: application
to breast, vascular, and musculoskeletal ultrasound,” in Seminars in
Ultrasound, CT and MRI, vol. 22, no. 1. Elsevier, 2001, pp. 50–64.

[3] A. C. Luchies and B. C. Byram, “Deep neural networks for ultrasound
beamforming,” IEEE TMI, vol. 37, no. 9, pp. 2010–2021, 2018.

[4] B. Luijten, R. Cohen, F. J. de Bruijn, H. A. Schmeitz, M. Mischi,
Y. C. Eldar, and R. J. van Sloun, “Deep learning for fast adaptive
beamforming,” in IEEE ICASSP 2019. IEEE, 2019, pp. 1333–1337.

[5] A. A. Nair, T. D. Tran, A. Reiter, and M. A. L. Bell, “A deep learning
based alternative to beamforming ultrasound images,” in IEEE ICASSP
2018. IEEE, 2018, pp. 3359–3363.

[6] A. A. Nair, M. R. Gubbi, T. D. Tran, A. Reiter, and M. A. L. Bell, “A
fully convolutional neural network for beamforming ultrasound images,”
in IEEE IUS 2018). IEEE, 2018, pp. 1–4.

[7] A. A. Nair, T. D. Tran, A. Reiter, and M. A. L. Bell, “A generative
adversarial neural network for beamforming ultrasound images: Invited
presentation,” in IEEE CISS 2019. IEEE, 2019, pp. 1–6.

[8] S. Vedula, O. Senouf, G. Zurakhov, A. Bronstein, O. Michailovich, and
M. Zibulevsky, “Learning beamforming in ultrasound imaging,” arXiv
preprint arXiv:1812.08043, 2018.

[9] D. Perdios, A. Besson, F. Martinez, M. Vonlanthen, M. Arditi, and
J. Thiran, “On problem formulation, efficient modeling and deep neural
networks for high-quality ultrasound imaging : Invited presentation,” in
IEEE CISS 2019, March 2019, pp. 1–4.

[10] D. Hyun, L. L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming
and speckle reduction using neural networks,” IEEE TUFFC, vol. 66,
no. 5, pp. 898–910, 2019.

[11] W. Simson, M. Paschali, N. Navab, and G. Zahnd, “Deep learning
beamforming for sub-sampled ultrasound data,” in IEEE IUS 2018.
IEEE, 2018, pp. 1–4.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI. Springer, 2015, pp.
234–241.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[15] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields
from arbitrarily shaped, apodized, and excited ultrasound transducers,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 39, no. 2, pp. 262–267, 1992.

[16] J. A. Jensen, “Field: A program for simulating ultrasound systems,” in
10TH NORDICBALTIC CONFERENCE ON BIOMEDICAL IMAGING,
VOL. 4, SUPPLEMENT 1, PART 1: 351–353. Citeseer, 1996.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] A. Luchies and B. Byram, “High dynamic range ultrasound beamform-
ing using deep neural networks,” in Medical Imaging 2019: Ultrasonic
Imaging and Tomography, vol. 10955. International Society for Optics
and Photonics, 2019, p. 109550P.

[19] A. Rodriguez-Molares, O. M. H. Rindal, J. D’hooge, S.-E. Måsøy,
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