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Abstract— Unfocused transmit beams such as diverging waves 

(DW) and coherent compounding are essential in achieving higher 

volumetric frame rates in 3D ultrasound imaging. However, image 

quality loss that comes with the use of DW becomes an issue, 

especially when the number of transmits is small. We propose a 

deep learning beamforming method for eliminating some of the 

artifacts associated with DW imaging. We train a convolutional 

neural network to map the non-linear transformation between the 

aligned per-channel data from 11 DW transmits, before 

compounding, to the compounded per-channel data from 51 

transmits. We include additional terms in our loss function such 

as the beamsum value and log-detected image pixel value to guide 

the learning in the desired direction. The neural network is trained 

and tested on simulation and in-vivo data. The final network 

successfully suppresses acoustic artifacts such as side lobe and 

clutter in the images obtained with 11 DW transmits.  

Keywords—.echocardiography, beamforming, fast volumetric 

imaging, convolutional neural networks, deep learning, loss 

function.  

I. INTRODUCTION 

High-frame rate 3D ultrasound (US) imaging is of high 
clinical importance for Echocardiography applications. Data 
acquisition is the limiting factor with conventional focused 
transmit beams in realizing high-frame rate. Coherent 
compounding of unfocused transmit patterns such as diverging 
wave (DW) imaging has been used to improve temporal 
resolution. These transmission techniques provide larger 
coverage and allow high-frame rate imaging with fewer 
acquisitions at the cost of reduced image quality [1][2].  

Ultrasound image formation can be considered as an inverse 
problem, in which the imaged medium is estimated using the 
data that is acquired through insonifications of the media. Data 
driven machine-learning methods, such as deep-learning, are 
shown to be more effective than the analytical methods, which 
consisted of handcrafted algorithms that require precise tuning 
of parameters, for inverse problems [3]. There has been an ever-
increasing interest in applying deep learning to the problems of 
computer vision and image processing. Deep learning methods 
are gaining popularity in ultrasound signal processing, 
beamforming and image processing. 

Following are some of the recent efforts in which neural 
network and deep learning methods are applied to beamforming, 
ultrasound image processing and image quality improvement 
problems. Luchies et al. [4] used fully connected neural 
networks to perform improved beamforming. Their network and 
learning task is intended to form images from the main lobe of 
the ultrasound beam, which they called ‘acceptance region’, 
while suppressing signals from other directions, i.e. ‘rejection 
region’, to improve quality. They trained multiple networks 
operating at different frequency bands, using the Fourier 
transform (FT) of the aligned per-channel data from simulations 
as inputs; and final beamsummed signal, if the signals originate 
from the acceptance region; or zero, if they come from the 
rejection region, as the output. In [5] Gasse et al., used neural 
networks on the beam-summed radio-frequency (RF) data to 
improve the image quality of plane wave images acquired at 
three different transmit angles by learning a mapping to the 
images obtained through compounding thirty-one transmits. 
Authors trained a convolutional neural network (CNN) using 
data acquired on healthy volunteers and imaging phantoms. 
Similar problem was addressed in [6], where the authors trained 
a U-Net architecture [7] from the input-output pair of low quality 
images reconstructed from a single plane wave transmit, and 
synthetic aperture images reconstructed from full transmit and 
receive dataset. They used simulation data to train their 
networks and showed improved results on in-vivo test cases. 
Yoon et al. [8] used fully convolutional neural networks to 
restore images from subsampled (in receive or transmit and 
receive) RF-data by interpolating the missing receive elements 
or transmit events. They trained their network using in-vivo data 
acquired from volunteers. Vedula et al. [9] and Senouf et al. [10] 
also used a U-Net architecture to solve several problems 
associated with high frame rate ultrasound imaging techniques, 
such as multiline transmission (MLT) and multiline acquisition 
(MLA). In these studies, the inputs to the network was delayed 
element-wise MLT and MLA in-phase/quadrature (I/Q) data 
and outputs were corresponding single-line transmission or 
single-line acquisition data, respectively. They used in-vivo 
cardiac data and phantom data for training and testing the 
network performance.  

Motivated by the success of these early investigations, we 
explore the potential of CNN’s applied to ultrasound 
beamforming process to improve image quality.  We train 
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CNN’s to learn the non-linear mapping between aligned per-
channel RF-data acquired with fewer DW transmissions and RF-
data from larger number of DW acquisitions. We choose to 
investigate the per-channel domain learning as opposed to 
beamsummed RF-data as it was reported in the literature for 
similar problems. Our motivation is to exploit the acoustic 
artifact structure in per-channel RF-data. We train the CNN to 
learn such structure in data obtained from an ultrasound pulse 
sequence with reduced number of transmissions and estimate the 
channel data with reduced artifacts, which is obtained from a 
pulse sequence of higher number of transmissions. The inputs to 
the network consists of per-channel data, after transmit and 
receive related delays are applied, for outputs we used a 
combination of per-channel RF-data, beam-summed RF-data 
and log-detected line data from the large number of transmits 
sequence.  

II. METHODS 

A. Data 

We demonstrate the image quality reduction problem with 
diverging waves on a 1-dimensional phased array. A cardiac 
phased array (S5-1, Philips Healthcare, Andover MA) and 
sector scan geometry is used for all the experiments.  

Our Deep Learning Beamforming (DLB) approach begins 
with per-channel time-delayed RF-data from 11 Diverging 
wave transmits -prior to compounding- and learns a mapping to 
the target data of 51 transmits. All the diverging wave transmits 
are focused at 50 mm behind the transducer surface and 
uniformly spaced to span the 90° scan geometry. We simulate 
three random phantoms using Field II [11] to generate the 
training data. We initially simulate and generate per-channel 
receive data for the all 51 transmission angles; data for 11 DW 
transmit case is obtained by downsampling the fully sampled 
transmit space. The per-channel data was downsampled to 8 
MHz after applying the delays. These data were used for 
training and testing the neural networks. We also collected in-
vivo data from healthy volunteers for training and test purposes. 
The final training dataset consisted of simulation and in-vivo 
data. Another dataset corresponding to a single B-mode image 
is used to fine-tune the network trained on phantom dataset. 

The input data is divided into overlapping patches of size 
[13,80,11] in fast-time, elements and transmits to be 
compounded. Fast time samples correspond to about four 
wavelengths. The corresponding outputs are a size [1,80] vector 
for compounded channel data and scalars for the beamsummed 
channel data and log-detected envelope data. Because each 
training sample corresponds to a single pixel of the ultrasound 
image, a single frame provides around 120,000 samples for 
training. Input data is normalized by dividing each patch by the 
patch RMS, such that the post normalization patch values have 
a unity variance. 

B. CNN Architecture  

A fully convolutional neural network is implemented in 
Tensorflow framework. The architecture consists of two layers 
with 3D convolutions, and remaining four layers with 2D 
convolutions. Each layer is followed by a leaky rectified linear 
unit (ReLU) activation function with the exception of last layer, 
whose activation is linear. Details of the network are given in 

Table 1. We experimented with number of 3D and 2D 
convolutional layers keeping the overall number layers constant 
since there is a trade-off between computational complexity and 
network expressive power. We started with five layers involving 
3D convolutions and reduced to two layers with minimal image 
quality degradation while achieving significant computational 
performance gains 

TABLE I.  CNN ARCHITECTURE 

Layer 

number 
Convolution type Number of filters Filter size 

1 3D 64 7x3x15 

2 3D 32 5x3x15 

3 2D 16 3x15 

4 2D 8 3x15 

5 2D 4 3x15 

6 2D 1 3x15 

 
Our architecture consist of multiple outputs in order to be 

able to define a combined loss function. The loss function 
include terms from per-channel data, prior to the summation; 
post channel-sum RF-data; and log-compressed envelope data. 
The mean-square error loss function (MSE) is used for network 
training. The compound loss is written as:  

𝐿𝑜𝑠𝑠 =  𝑎 × 𝑀𝑆𝐸(𝐶, 𝐶̂) + 𝑏 × 𝑀𝑆𝐸(𝑆, 𝑆̂) + 𝑐 × 𝑀𝑆𝐸(𝐼, 𝐼) +

𝑑 × ∑ ℓ2(𝑊𝑖)
𝑁
𝑖=1     (1) 

where C, S and I stand for compounded channel data, 

beamsummed channel data, and log-detected envelope data, 

respectively. Here  ̂ indicates the predicted values as opposed to 

true values. ‘a, b, c and d’ are the hyperparameters used to 

accommodate the scale difference between different losses and 

to fine tune the network performance. Finally, we use an l2-

norm penalty across the network weights to regularize the 

network and eliminate overfitting. Typical values for the 

hyperparameters are shown in table 2. Although using the 

individual components of the loss term provide reasonable 

training performance; in our experiments, using the compound 

loss not only leads to better performance but also smoother and 

faster training convergence.  

TABLE II.  LOSS FUNCTION HYPERPARAMETERS 

a b c d 

10 10-1 1 10-4 

 
We used the Adam optimizer [12], with an initial learning 

rate of 1e-3, decaying exponentially every 10 epochs. We 
further tuned the network parameters based on its performance 
on the validation data. We target 1000 epochs for training our 
network. Additionally, performance on validation dataset is 
used as a stopping criterion for training, the final network is 
trained for 630 epochs. 
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III. RESULTS AND DISCUSSION 

Our initial experiments with simulated phantom and in-vivo 
cardiac datasets show promising results in reducing clutter and 
enhancing signal quality. B-mode image reconstructions for a 
simulated phantom using conventional delay-and-sum (DAS) 
approach and our DLB approach are presented in Fig 1. The 
phantom results clearly indicate that the DLB successfully 
eliminates the sidelobes, which are present in the DAS case. 
Because sidelobes are apparent in the per-channel RF-data as 
tilted wavefronts our initial hypothesis of ‘exploiting the 
acoustic artifact structure in per-channel RF-data’ is proven to 
be correct. However, eliminating these acoustic artifacts does 
not necessarily improve the image quality significantly. In-vivo 
results are more subtle with evident clutter reduction in cardiac 
chambers. In both cases DLB with 11 transmits improves the 
image quality by suppressing the artifacts, which are absent in 
51 transmit case. However, additional information that is 
present in 51 transmit images is not recovered by DLB 
processing.  

The pixel-level training strategy we employ in this study 
offers a number of advantages. First, it enables us to extract a 
large amount of data from a single image. Second, it reduces 
the number of training samples required to avoid overfitting. 
Third advantage is that it implicitly prohibits the network to 
learn dataset biases as it would have if we trained the network 
using an image or patch-based approach. 

We also observed that the newly introduced compound loss 
term guides the network during training, through several local 
minima, which individual loss terms were not able to move out 
of and converge to. This is inferred by calculating an image 
MSE between the ground truth image and images predicted 
from networks trained with different loss functions. The image 
predicted by the network with the compound loss function has 
the lowest image MSE. This is counterintuitive because 
typically when the network is constrained more, e.g. with a 
compound loss function, the final MSE is higher than the 
MSE’s of networks trained with a single loss term. However, 
this shows that the individual components of the compound loss 
term work in cooperation.  

Additionally, the network we use is relatively small 
compared to others used for similar beamforming tasks (i.e. U-
Net). Our motivation for keeping the network light is to develop 
an understanding of the network learning capability for a 
specific problem, i.e. learning the acoustic artifacts in the per-
channel signal and eliminating them from the resulting image 
pixel value. There are additional benefits of using a smaller 
network such as less data necessary for training, shorter training 
time and shorter inference time. It is worth mentioning here that 
our network has not ‘seen’ a single cardiac image, therefore has 
not learned any structural cardiac information that could be 
beneficial in forming images of the heart but on the other hand 
the network has no bias for any anatomy, disease or clinical 
condition.  

IV. CONCLUSIONS 

In this work, we have presented a deep learning beamformer 
(DLB) implemented for high-frame rate echocardiography with 
limited DW transmissions. Our simulation and in-vivo results 
demonstrate that DLB improves image quality by eliminating 
the sidelobes that are absent in images with larger number of 
transmits. Although they can be implemented successfully as 
presented in this work, the clinical impact and diagnostic 
validity of neural networks for signal processing tasks such as 
beamforming still needs to be addressed. Future work needs to 
address these problems as well as to investigate more elaborate 
network architectures and loss functions. 
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            (a) DAS with 11 transmits        (b) DLB with 11 transmits        (c) DAS with 51 transmits 

Figure 1: First two rows presents B-mode US image reconstructions and zoomed patches for a phantom, and bottom two rows 
present B-mode US image and zoomed patches for an in-vivo dataset. All images are displayed in [0, 60] dB scale. Zoomed 
patches are presented to accentuate the differences. 

 

  
 I

n
-v

iv
o

 z
o

o
m

ed
  

  
  
  

  
  
  

  
  
 I

n
-v

iv
o
 B

-m
o

d
e 

  
  

  
  
  

  
  
  

  
P

h
an

to
m

 z
o
o

m
ed

  
  

  
  
  

  
  
  

P
h

an
to

m
 B

-m
o

d
e 

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

MoC10.4


