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Abstract— Photoacoustic microscopy acquires volumetric RF 
data to obtain high resolution, high contrast, images of the 
microvasculature but is associated with slow acquisition of data 
due to mechanical raster scanning across the image plane. Recent 
work has shown that the acquisition speed can be increased using 
compressive sampling methods and subsequent reconstruction. 
These methods use bases (dictionaries) learned from prior fully 
sampled acquisitions, or classical bases such as the Fourier or 
wavelet bases. In this study, we present the simultaneous learning 
of bases, and reconstruction using only subsampled data. The 
algorithm was validated at two different subsampling levels 50% 
and 75% downsampling, and compared to the ground truth 
reconstruction with fully sampled data by estimating the peak 
signal to noise ratio (PSNR). No significant difference in 
performance was observed between the fully sampled (20.0±3.0 
dB), 50% (19.9±2.1 dB) and 75% (19.1±2.6 dB) subsampled data. 

Keywords—Photoacoustic Microscopy, Dictionary learning, 
compressed sensing 

I. INTRODUCTION  
Photoacoustic microscopy (PAM) constructs high resolution 

and high contrast images of the microvasculature [1]. PAM 
acquires volumetric RF data by mechanically raster scanning the 
specimen under test with coaxially and confocally aligned 
ultrasound detection and optical excitation [2][3]. The slow 
speed of the mechanical raster scan limits its application and 
translation to other microvascular imaging applications.  

Recent work to reduce the acquisition time includes the use 
of additional hardware, such as mirror galvanometers [4], or 
digital micromirror devices [5][6], to reduce the scanning time 
by electronic steering of the optical excitation which increases 
the scan speed. A complimentary strategy, used in other imaging 
modalities such as MRI or ultrasound is to acquire fewer 
samples and perform a non-linear offline reconstruction using 
compressive sensing (CS)[7][8].  

Recovery of the unknown data in CS is predicated on the 
data being sparse, or at least compressible in a basis, which is 
approximately incoherent with the sampling basis [8]. In this 
work, we apply dictionary learning (DL) methods to 
simultaneously learn the basis in which the data are sparse and 
perform signal recovery from incomplete/undersampled data in 
PAM. Throughout the paper, matrices are in boldface and 
italicized, vectors are in boldface, while scalars are italicized. 

II. COMPRESSIVE SENSING 
In compressive sensing  the data (b) are constrained  to  have 

has few non-zero coefficients compared to its dimensionality in 
the transform domain (A), while undersampling in the data 
domain (multiplication by Φ) leads to sampling over a wide 
swath of the transform domain (incoherence) [7]–[9].  

min	‖𝐱‖$ subject to  ‖𝜱𝑨𝐱 − 𝐛‖)) ≤ 𝜀                          (2.1) 

The sparsity constraint is enforced by the l0 ‘norm’
(‖ ‖$ ) or its convex relaxation, the L1 norm [9]. Accurate 
sparse coding requires a-priori knowledge that the signal is 
sparse in a given domain, or the use of a dictionary (union of 
several bases) with more bases than the dimensionality of the 
data (overcomplete). Pioneering work by Engan et al. [10][11] , 
Aharon et al.[12], and several others [13]–[15] led to powerful 
algorithms which could generate data adaptive dictionaries from 
training data capable of representing data sparsely. 

 

III. DICTIONARY LEARNING 
Dictionary learning (DL) methods have led to state of the art 

results in denoising, super-resolution, compressive sensing, in a 
multitude of applications [16]–[19]. Most DL algorithms [10]–
[15] proceed using an alternating minimization approach. The 
approach begins a sparse coding stage, where the data are 
sparsely coded with the dictionary. Subsequently, the dictionary 
is updated to minimize the representation error. The updated 
dictionary is then used for the next sparse coding stage.  This 
sequence is repeated until a specified number of iterations elapse 
or a tolerance in the error with respect to the data is reached.   

DL has also found extensive application in PAM and 
photoacoustic tomography [19]–[23]. Liu et al. [24] have used 
learned dictionaries to reconstruct data using compressive 
sensing in PAM. In this work, dictionaries are learned from fully 
data acquired earlier, and the learned dictionary is used to 
reconstruct undersampled data. However, several authors, [25]–
[27] have demonstrated methods to learn the dictionaries 
directly from incomplete or under sampled data, which does not 
need a  basis trained from  previously acquired fully sampled 
data.  

In this work, we use the method developed by Mairal et 
al.[26] to obtain a basis and reconstruct undersampled PAM 
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data. The method uses the K-SVD DL algorithm with a revised 
update method, based on a weighted rank 1 approximation. For 
fully sampled training data (T), the K-SVD follows the 
following sequence of iterations, first, sparse coding, holding the 
dictionary D fixed, at a sparsity of K. 

𝑎𝑟𝑔𝑚𝑖𝑛
𝐱𝐢

	‖𝑫𝐱𝐢 − 𝐓𝒊‖)) ≤ 𝜀	subject to ‖𝐱𝐢‖$ ≤ 𝐾            (3.1)                                                                                        

Followed by the dictionary update stage for the i’th atom 
        𝑬 = 𝑻 − ∑ 𝒅𝒋𝒋=𝒊 𝐱𝒋𝑻                                                    (3.2) 

where xT denotes the sparse coefficient vectors of the training 
samples that use the i’th atom. 

      Rank 1 SVD (𝑬) = UΣV’                                              (3.3) 
 
      𝐝𝐣

𝒖= U                                                                           (3.4) 
 
Where 𝐝𝐣

𝒖 denotes the updated basis vector 𝐝𝐣. The iterations 
(2.1)-(2.3) are performed until suitable convergence criterion is 
achieved or a fixed number of iterations has elapsed. 
However, for subsampled data, we have  
     

  𝑎𝑟𝑔𝑚𝑖𝑛𝐱𝐢
	‖𝜱𝑫𝐱𝐢 − 𝐓𝒊‖)) ≤ 𝜀	 subject to ‖𝐱𝐢‖$ ≤ 𝐾          (3.5) 

and the update stage (2.3)-(2.4) is modified to perform iterative 
weighted rank 1 approximation as follows  

Rank 1 SVD (𝜱𝑻+ (𝟏 −𝜱)𝐝𝐣
𝒐𝒍𝒅𝐱𝐣𝒐𝒍𝒅)                                 (3.6) 

For each atom, (2.6) is repeated for a fixed number of iterations. 

IV. METHODS 
      This method was validated using PAM data acquired from 
the brain of a male CD-1 mouse (300 B-scans, 3600 A-lines 
each). The data were retrospectively subsampled by randomly 
dropping A-lines (Fig.2 (c)). Twenty five thousand randomly 
chosen voxels (100 μm x 25 μm x 50 μm) from the focal plane 
were used to train the dictionary and reconstruct the image from 
subsampled data using the proposed method (Fig.3 (d)). We 
also reconstruct an image using a dictionary trained from fully 
sampled data for comparison (Fig.2 (b)) with the same 
parameters of the algorithm as shown in table 1.  To avoid 
ambiguity, we refer to the number of times the K-SVD 
alternating minimization is executed as outer iterations. The 
dictionary learning parameters were chosen so as to reconstruct 
the data faithfully 

TABLE 1. ALGORITHM PARAMETER VALUES 

Parameter Value 
Dictionary size 1024 
 
Sparsity  

 
20 

 
Outer iterations 

 
5 

 
Weighted  
rank 1 SVD iterations  

 
5 

V. RESULTS 
The data were reconstructed at two different subsampling 

levels (50% and 75%) subsampling. Fig. 1(a) Depicts a portion 
of the ground truth single B-scan data, after envelope detection, 
indicated by the green line in Fig. 3. The same portion of the B-
scan is shown in Fig. 1(b) after reconstruction using fully 
sampled data.  

Fig. 1 (c) depicts a B-scan with 50% of the A-lines discarded 
and Fig.1(d) shows the B-scan in Fig 1(c) reconstructed using 
the dictionary learned from 50% subsampled data. The 
algorithm’s performance was quantified by measuring the peak 
signal to noise ratio (PSNR) of the reconstructed data with 
respect to the ground truth data as illustrated in Fig. 2. 

Fig. 3 shows the reconstruction of 50 % subsampled data. 

Fig. 3(a) shows the ground truth MIP, Fig. 3 (b) shows the MIP 
of the data reconstructed using a dictionary learned from fully 
sampled data. Fig. 3 (c) shows MIP of the 50% subsampled data 
and  Fig. 3(d) shows the MIP reconstructed from 50% 
subsampled data. No significant difference was observed 
between the PSNR evaluated for the fully sampled 
reconstruction, and the reconstruction estimated for the 50% and 
75% subsampled data. 

 
 
Fig. 1(a) Ground truth B-scan (b) MIP of B-scan reconstructed with fully 
sampled dictionary (c) 50% subsampled B-scan (d) Reconstructed data 
from (c). 

 

 
Fig 2. PSNR evaluated with respect to ground truth data for N=300 B-scans, 
each consisting of 3600 A-lines. 
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VI. DISCUSSION 
In this work, an algorithm to learn a dictionary from 

incomplete PAM data with simultaneous reconstruction was 
presented. The algorithm is able to reconstruct the data with 
negligible difference as is seen from Fig.1 and Fig. 3.  No 
statistically significant difference is observed with respect to the 
reconstructed data as seen from the PSNR results 19.9±2.1 dB 
(50%) and 19.1±2.6 dB (75%) Fig. 2.   

The approach potentially has the ability to speed up PAM 
scans by at least four times. In future work, this dictionary 
learning method can be extended to deal with more structured 
subsampling patterns, rather than random downsampling. 
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