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Abstract—In this paper we present a novel machine learning
approach for noise suppression in the signal generated by
automotive industrial grade active ultrasonic sensors. A convolu-
tional neural network (CNN) based machine learning approach
is presented. State of art noise suppression methods are also
discussed and used as benchmark against the proposed machine
learning approach. The results of numerous simulated scenarios
as well as actual sensor measurement campaigns are presented
and discussed. Several metrics are derived to quantify the quality
of the signal and give an indication of the performance of the
different approaches of noise suppression. These derived metrics
assess the performance of the different approaches in terms of
amount of noise suppressed and amount of distortion introduced
to the signal of interest.

Index Terms—neural networks, ultrasonic, machine learning,
noise suppression, denoising

I. INTRODUCTION

Ultrasonic sensors are commonly used in the automotive
industry for obstacle detection and environment perception.
Ultrasonic-based systems are usually comprised of several
sensors distributed around the vehicle. These sensors fire
ultrasonic waves and report the time of flight (TOF) needed by
an echo to bounce back off an obstacle in the vicinity of the
vehicle in order to calculate the relative distance between the
sensor and the obstacle. The TOF information from several
sensors is then processed simultaneously using a form of
triangulation to determine the exact position of the obstacle
in a two dimensional map centered around the vehicle. This
map is then used for several higher-end functionalities such
as reporting these distances to the end user, automatic parking
and braking on obstacles.

The quality of the ultrasonic signal plays an important role
in the ability of the whole system to report correct information
to the end user and to perform the higher-level driver assistance
functionalities. In real life operation, there are several factors
affecting the ability of the system to correctly identify the
TOF of the ultrasonic reflected echo such as the presence
of ultrasonic noise in the environment, the presence of other
vehicles equipped with ultrasonic sensors in the vicinity of the
vehicle and ground reflection from uneven terrain in the field
of view of the sensor (1).
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Fig. 1. Ultrasonic based system detecting an echo from an actual obstacle
(tree) and being influenced by external disturbance sources such as noise in
ultrasonic frequency range, other ultrasonic based systems and echoes from
ground reflection

Several algorithms exist to suppress spurious ultrasonic
signals and extract the signal of interest (SOI) and then
consequently identify correctly the TOF. In this paper we
present a novel approach to suppress noise in the measured
signal as reported by an industrial grade automotive ultrasonic
sensor based on machine learning (ML). Simulation results are
presented showing the improvement achieved by this approach
in comparison to the state of art algorithms. The results are
furthermore consolidated by real life measurement campaigns
and emphasized using several metrics of interest.

Initially the existing algorithms will be reviewed followed
by a description of the simulation setup used to validate the
results. Afterwards we present several classical methods for
noise suppression and also a description of the proposed ML
based approach and the results pertaining to it under the
same simulation conditions. A description of the measurement
campaign is then presented and the results for all the denoising
algorithms is compared in terms of relevant metrics. We end by
a discussion of the implications of these results and conclude.
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II. EXISTING NOISE SUPPRESSION ALGORITHMS

In this section we discuss the most commonly used denois-
ing methods showing which is most suitable to the nature of
ultrasonic signals coming from automotive grade ultrasonic
sensors and which is most effective as well. We then discuss
the drawbacks of such methodologies. Later on we show how
this is addressed and mitigated in the proposed approach.

In recent years several denoising methodologies are found
in commercial products such as noise cancellation headsets.
This family of denoising algorithms perform active noise
cancellation [1] to counteract spurious signals coming from
external sources. They rely on the fact that the SOI is known
and coming from a definite source such as an MP3 player. This
is not applicable for automotive ultrasonic sensors because the
signal is already mixed at the source and it is not known apriori
which artifacts belong to the SOI and which are spurious and
should be suppressed. Therefore we have to rely on other
methodologies to identify the spurious noise sources, such
as assuming the noise artifacts have only a certain range of
frequency components or assuming that the SOI follows a
specific model and all other signal components that do not
fit this model should be suppressed.

A trivial method for removing noise from a signal is
the moving average window technique (eq.1). This method
depends mainly on the assumption that the SOI is only
found in the low frequency range of the signal and thus the
high frequency components are only contributing to noise.
Therefore this part of the spectrum with the noise components
is what is removed.

Sout[t] =
1

N
∗

N∑
i=0

Sin[i+ t] (1)

Where Sin[t] is the sampled input signal at a sampling rate
higher than the Nyquist rate to avoid any loss of information,
N is the size of the averaging window in terms of number of
samples and Sout[t] is the output from the denoising algorithm.

A more sophisticated method of achieving the same target
of suppressing the high frequency noise components given the
same assumptions, is using a low pass filter (LPF) (eq.2).

Sout[n] =

N∑
i=0

bi ∗ Sin[n− i] (2)

Where Sout and Sin play the same role as in the previous
equation and bi are the weights of the LPF.

This method offers the possibility to tune the filter parame-
ters to achieve minimum distortion of the low frequency com-
ponents and also to achieve regulated suppression of the high
frequency components. This comes with the cost of having
longer filters, thus adding to the complexity of the algorithm
and number of computations needed to filter the signal and
thereby increasing the overall runtime of the algorithm. Given
the realtime processing restrictions present in ultrasonic based
driver assistance systems (ADAS) the optimum filter design is
not always possible.

The assumption that the noise is only in the high frequency
part of the signal does not hold in case of ultrasonic sensor
signals. Other methods such as adaptive multistage noise
suppression filters [2] [3] are more adequate to the problem
at hand. Such filters are by nature complex and include a
large number of computations in subsequent steps which also
lead to increased runtime and failure to satisfy the realtime
constraints.

A family of algorithms that require relatively lower pro-
cessing power and perform denoising over the whole spec-
trum are discrete wavelet transform (DWT) based methods.
The DWT approach described in [6] and [7] achieves good
denoising results in terms of suppressing unwanted spurious
signals and extracting the SOI. It comes though with the cost
that the extracted SOI is distorted, since it is the result of
reconstructing the superimposed wavelets passing the designed
noise thresholds. This is not suitable for the ultrasonic sensor
signal because the SOI is further processed to extract features
pertaining to the reflecting obstacle such as height and class
of the obstacle which is then fed into the higher layers of
the ADAS for end-user functionalities such as braking on
obstacles and automatic parking. Thus, the need arises to have
a denoising algorithm that achieves similar noise suppressing
results while maintaining the integrity of the SOI.

In the following section we present the proposed machine
learning based approach. Further, we present a simulation
setup that shows initial results of how this proposed method
competes with the existing algorithms in terms of noise
suppression and outperforms them with regards to maintaining
signal integrity and introducing minimal distortion into the
signal of interest.

III. THE PROPOSED MACHINE LEARNING BASED
APPROACH

In literature there exist several publications discussing the
use of machine learning and specifically deep neural networks
for signal processing. Here we are interested in the family of
algorithms that deal with the separation of signal components.
Some approaches focus on the extraction of a specific SOI
and discard the rest while other approaches consider all the
signal components to be of interest and separates the different
components such as [4] and [5]. There, the voice of the
singer and the background music are both of interest and the
algorithm tries to separate them without compromising signal
integrity. The problem with denoising ultrasonic sensor signals
is more in the domain of the former family of algorithms,
where we only care about the echo from the obstacle and
discard all other signal components.

We present here a novel approach to use deep CNNs
to perform noise suppression and extract the SOI from an
ultrasonic signal mixture containing an echo from an actual
obstacle and different types of environment noise in the same
spectrum as the echo signal. The main concept of the approach
is that the whole measurement is fed into the CNN and the
denoised signal is completely regenerated at the output layer
of the network. The network is trained on noisy signals with
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different types and levels of noise using supervised learning.
The label at the output layer for each training sample is the
same version of the input signal but with no noise component
and only the echo features are present.

The structure of the network is the classical hour glass shape
with the difference being that it is purely convolutional with no
dense layers. The network is compressed using downsampling
and decompressed using upsampling as described in (2). The
number of layers is optimized to be 7 layers and the number
of activation maps is set to a maximum of 128 kernels at the
most compressed layer located in the middle of the neural
network. The hyperbolic tangent (tanh) is used as activation
function to limit the maximum values of the firing of the
neurons, especially at the output layer where an extreme value
could lead to the occurrence of false positives and unexpected
behaviour. The output and the input layers are of the same size
as the number of samples present in one measurement from
the sensor.

In the following sections we show the results of using this
approach on simulation data and actual measurements. we
benchmark the results against state of the art algorithms for
noise suppression.
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Fig. 2. The convolutional neural network structure of the proposed machine
learning approach

IV. SIMULATION MODEL SETUP

The natural reverberation frequency of the membrane of
the automotive grade sensor used is 51.2 KHz. We generate
a carrier wave having this resonance frequency. This carrier
wave is then used to modulate an empirical ultrasonic echo
shape that was derived based on numerous field examination of
the features of the ultrasonic wave reflected off several obstacle
classes. We see in eq.(3) how this process is defined.

Am(t) = Ae(t) ∗Acsin(2πfct) (3)

Where Am(t) is the modulated signal, Ae(t) is the base-
band empirical echo envelope shape, Ac is the amplitude of
the carrier frequency. fc is the carrier frequency and is set to
51.2 KHz.

On top of this modulated signal we add two components one
for noise and one for ground reflections. Both components are
superimposed in the modulated state of the simulated signal
to account for constructive and destructive interference effects.
For the noise components, we generate them using an additive
Gaussian white noise (AGWN) model. The power of this
added noise signal is then varied to asses the performance of
the different suppression mechanisms under different signal to
noise ratio (SNR) values. The ground reflection components
simulate the weaker reflections coming from uneven terrain.
The empirically generated ground reflection signal is done
by superimposing a large number of weak echoes having
uniformly distributed scatter and a Gaussian distributed range
of amplitudes.

The final generated signal is then demodulated using a
carrier sinusoidal wave having the same frequency and the
resulting envelope curve is then decimated to 200 samples
covering a range of 10 ms of ultrasonic wave to resemble
the signal output from the actual ultrasonic sensor. From the
approximation equation of acoustical wave propagation in air
(eq.4), we determine the speed of the ultrasonic wave (eq.5).
Accordingly we know that the 10 ms duration is equivalent to
a range of 172 cm at room temperature (20°C).

S = 331.3 + (0.606 ∗ temp°C) (4)

S = 343.42m/s (5)

Where S is the speed of the ultrasonic wave propagation in
air.

A validation set with a large number of samples is generated
using this simulation model covering a range of SNR values.
This validation set is then used to assess the performance of
the proposed noise suppression algorithm and benchmark it
against the DWT method.

In (3) we see an example of applying the DWT based noise
suppression algorithm. We see that most of the noise artifacts
are completely suppressed but when zooming in on the SOI
segment (4) we see that the SOI is deformed, which is the
main drawback of this method.

The DWT algorithm used in this example is based on the
Daubechies wavelet, as it is suitable for the nature of the
ultrasonic sensor signal. We also use a first-level transform
to keep the number of computations at a suitable level for
realtime constraints. We employ the universal threshold (eq.6)
for suppressing the undesired spurious artifacts in the signal.
This step includes the soft clipping of the coefficients falling
below the threshold.

Tu =

√
2 ∗ log(length(X)) ∗median(abs(D))

0.6745
(6)
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Fig. 3. Applying descrete wavelet transform denoising method on a noisy
signal simulated to resemble the signal from an automotive ultrasonic sensor

Fig. 4. Applying discrete wavelet transform denoising method on a noisy
signal simulated to resemble the signal from an automotive ultrasonic sensor
- zooming on the signal of interest which is the simulation of a reflection
from an obstacle in the vicinity of the sensor

where Tu is the empirically calculated universal threshold.
In (5) we see an example of noise suppression performed by

the proposed machine learning approach over the same signal
presented earlier with the DWT approach. The neural network
structure is trained over 80% of the simulation data available at
all the SNR levels generated. It is then validated on 10% of the
samples after each epoch and tested over the remaining 10% of
the samples from which this example is chosen. The results
shown throughout the paper are only based on test samples
that the neural network never had as input during its training
phase.

From (5) we see that the noise was suppressed to levels

Fig. 5. Applying machine learning based denoising method on a noisy signal
simulated to resemble the signal from an automotive ultrasonic sensor

comparable to the DWT method. By further zooming in (6)
we see that the SOI retains much more of its original features.

Fig. 6. Applying machine learning based denoising method on a noisy
signal simulated to resemble the signal from an automotive ultrasonic sensor
- zooming on the signal of interest which is the simulation of a reflection
from an obstacle in the vicinity of the sensor

In (7) we see the performance of both algorithms in terms
of suppressing noise presented over a range of SNR values
[-5, 20] dB. The DWT performs slightly better in this regard.
Nevertheless the main advantage obtained from using the
machine learning based approach is that it introduces much
less distortion compared to DWT as will be demonstrated.

To adequately judge the performance of the algorithm we
take the changes in signal energy not originally present in
the SOI as a measure of distortion. This will include added
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Fig. 7. Plotting the ratio of the noise suppressed to the original noise power
present in the signal without any processing and after applying both the
discrete wavelet transform denoising method and the machine learning based
denoising method

artifacts as well as removed components from the original
SOI. This approach will also prevent the trivial solution where
the output of the algorithm is an array of zeroes where the
noise is completely suppressed but the SOI is also lost. In (8)
we show a comparison between the DWT based method and
the machine learning based method in terms of the defined
distortion metric. We see that even though the 2 algorithms
have comparable performance in terms of noise suppression,
the machine learning based approach outperforms the DWT
method in terms of conserving the SOI integrity and in terms
of the introduced distortions to the original shape of the SOI.
We also see that at low SNR levels, the DWT distortion
saturates at a ratio of 1.0, indicating that the SOI is completely
suppressed and the algorithm is not capable of differentiating
between the SOI and the noise components of the signal. In
contrast, the machine learning approach is still capable of
extracting the SOI from the noisy input signal.

It is important to mention that with further optimization
of the hyper parameters of the legacy denoising algorithms
we could achieve better results over the available trace set.
Consequently the performance could improve but only to a
certain limited extent. This is manifested in the trade-off
between the noise suppression capability and the distortion
introduced to the signal.

In the next section we present the measurement campaign
we carried out. We show that the results from this mea-
surement campaign are in line with the simulation results,
which emphasizes further the superiority of the machine
learning based approach over the legacy algorithms in real
life scenarios.

Fig. 8. The amount of distortion introduced to the signal of interest without
processing and after applying the discrete wavelet transform denoising method
and the machine learning based denoising method

V. MEASUREMENTS AND RESULTS

In the simulation setup, it is easy to know the SOI with no
added noise on one hand and the amount of noise introduced
to the measurement on the other hand as it is synthetically
generated. With real life measured data, it is more difficult to
extract this information as the echo SOI and the environmental
noise are already superimposed at the entry point of the data
acquisition setup. Therefore we perform every measurement
twice for this measurement campaign. Once with a noise
source and once without. The measurement done with no noise
source will be considered to be the SOI. This defined SOI is, of
course, not really only the SOI as there is an added noise floor
coming from the environment and the measuring equipment.
However, in a controlled environment, and compared to the
magnitude of the noise added by the noise source introduced
in the noisy measurement, this noise factor in the SOI can be
neglected.

A measurement campaign is carried out to record the
echo coming from several obstacles including boxes, poles,
car fronts, car sides, bushes and pedestrians set at different
distances from the recording sensor. Each measurement is
repeated several times, once with no noise source and then
with several noise sources including clinging keys, truck
brakes, rain, air gun and modified semaphores for the visually
challenged. The ensemble of the set of traces with the noise
source are used as training, validation and testing sets for the
machine learning based approach. The set of scenarios with no
noise sources are used as labels. The KPIs in terms of noise
suppression and distortion to the SOI are measured using the
noisy scenarios and the corresponding non noisy scenarios as
SOI.

For the extraction of the KPIs we use the complete set of
measurements for the DWT based method and we use 80% of
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the shuffled measurements for training the machine learning
based approach, 10% for validation and the remaining 10% for
testing and setting the KPIs. It is important to mention that for
the extracted KPIs the samples used were never introduced to
the neural network during the training phase, and thus have no
influence on the evolution of the kernel weights of the neural
network.

Fig. 9. The amount of distortion introduced to the signal of interest without
processing, after applying the discrete wavelet transform denoising method,
and after applying the machine learning based denoising method using real
measured traces

The DWT approach and the ML based approach are applied
on the recorded real measurements. In (9) it is evident that for
the SOI distortion, the levels of distortion are higher than the
levels reported during the simulation. This is attributed to the
fact that the echo shapes are not generated by a simulation
model rather the shape of the echo varies in a realistic manner
as the data is from real measurements. This proves to be
more difficult for the DWT approach to recreate the exact
echo from weighted wavelets. It also proves to be more
challenging for the machine learning based approach to learn
the shape of the echo and generalize in a manner sufficient
to recreate the SOI as a congruent denoised signal at the
output layer. Another factor is that there is a minor neglected
noise component because of the measuring equipment and the
surrounding environment that - although minimal - still could
not be entirely eliminated.

With these considerations the performance of the ML based
approach still proves to be superior over the complete SNR
range and follows the same pattern as predicted by the
simulation model.

VI. DISCUSSION AND CONCLUSION

It is clear from the results of the simulations and measure-
ments campaigns that the ML based approach is comparable
to the DWT approach in terms of noise suppression, and is
superior in terms of the levels of distortion introduced to the
SOI.

The superior performance is explained by the fact that the
ML based approach learns the typical shape of a SOI as well as
the different noise patterns from the numerous measurements
used to train the CNN, unlike the DWT algorithm which fits
the SOI (the echo in this case) to the base wavelet shape.

By employing our algorithm the integrity of the SOI is
maintained while simultaneously suppressing the unwanted
spurious noise artifacts. This leads to higher quality signal
information and better functionality for the driver assistance
systems relying upon these ultrasonic sensors.

There are many areas where ML could be employed as
supplementary algorithms to provide degrees of confidence
and to further assist existing deterministic algorithms. In other
domains such as the noise suppression for ultrasonic sensor
signals that is presented in this work, the ML approaches could
replace existing methods and provide better performance in
terms of achieving the main target of the algorithm while intro-
ducing less distortion to the SOI and conserving the integrity
of the processed signal. In general, ML based signal processing
approaches show very promising results with superior KPIs,
compared to existing state of art algorithms. They provide
potential for improvement in many aspects of signal processing
such as signal conditioning, filtering of unwanted artifacts and
extraction of useful information and features.
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