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Abstract—We present a computationally-scalable model for
Capacitive Micromachined Ultrasonic Transducer (CMUT) ar-
rays capable of simulating CMUTs in all modes of operation.
To solve the fluid-structure problem, a coupled finite element
and boundary element method (FE-BEM) is employed. Scalable
performance is achieved using data-sparse routines for Hierar-
chical Matrices. The fluid-structure problem is solved in the
frequency domain and used to generate a set of reduced-order
linear time-invariant system relating applied mean pressure to
mean displacement for a set of lumped sub-domains. A simple
non-linear contact model is added to simulate potential contact
forces between membrane and substrate. This coupled dynamic
system is evolved in time using an algorithm based on fixed-point
iteration. The model is validated against finite element software
for a representative CMUT geometry and various input voltage
signals corresponding to the different regimes of operation.

Index Terms—Transducers, Computational Modeling

I. INTRODUCTION

After an extensive development period, commercial ultra-
sound probes based on Capacitive Micromachined Ultrasonic
Transducers (CMUTs) are beginning to emerge on the market.
When compared to the market-leading bulk pieoelectric tech-
nology, these probes bring with them a number of disruptive
innovations, including improved bandwidth, superior manu-
facturing flexibility, easier integration with front-end electron-
ics, and reduced costs as a result of batch processing and
economies of scales. With the advent of commercially-viable
CMUTs there exists a need for practical design and modeling
tools appropriate for a rapid development cycle. Growing
interest in CMUTs for therapeutic applications [1]–[4] means
that these tools should accurately capture CMUT behavior in
all regimes of operation, including those involving dynamic
collapse of the membranes. However, modeling remains a dif-
ficult challenge, involving physical phenomena spanning mul-
tiple domains (electrostatic, structural mechanics, acoustics),
challenging computational scaling due to coupled acoustic
interactions, and actuation forces which are inherently non-
linear. We present a model which addresses these challenges.
Our multi-domain approach combines several numerical tools
together to create a generalizable and scalable model for
CMUTs operating in all regimes.

The authors would like to acknowledge funding from the Engineering and
Physical Sciences Research Council under Grant No. EP/L024012/1.

II. METHODS

A. Solving the fluid-structure problem in the frequency domain

Fluid-structure interactions, which are critical to the fre-
quency behavior of CMUTs in immersion, are modeled using
a coupled finite element boundary element method (FE-BEM).
For simplicity, linearity is assumed in both the acoustics (valid
for small pressure amplitudes) and the structural mechanics
(valid for membrane deflections less than the membrane thick-
ness). A fine 2D triangular mesh is generated for each CMUT
membrane with each node having a single degree of freedom
representing its transverse displacement. The following linear
system is assembled at each frequency ω relating the nodal
displacements ~u to the nodal forces ~f

(−ω2M + iωC + K + iωZ(ω))~u = ~f (1)

The system matrices are generated in the usual finite element
fashion, through the use of shape functions to interpolate the
field variables at locations within the elements. For example,
the displacement field of an element after transformation
(x, y) → (ξ, η) can be written as a linear combination of the
shape functions Nj in the transform coordinates, i.e.

u(ξ, η) =

3∑
j=1

ujNj (2)

N =

 ξ
η

1− ξ − η

 (3)

where uj are the three nodal displacements associated with
the element.

The element mass matrices are generated using a lumped-
consistent weighted mass method according to the following
expression

Me = ρhAe

(
µ

∫∫
NNT dξdη + (1− µ)

1

3
I3

)
(4)

where ρ and h are the membrane density and thickness,
respectively, Ae is the area of the element, µ = 1/2 for equal
weighting, and I3 is the 3× 3 identity matrix.

The element stiffness matrices are generated based on the
procedures for boundary plate triangles described in [5]. These
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Fig. 1. Example 2D meshes and sub-domain partitioning for circular and
square CMUT geometries.

plate elements are rotation-free and are based on classical thin
plate theory (Kirchhoff-Love). These elements are accurate so
long as the membrane thickness is much less than the smallest
longitudinal dimension.

To include the effects of structural damping, a proportional
damping model (Rayleigh) is adopted where the global damp-
ing matrix is given as a linear combination of the global mass
and stiffness matrices, i.e.

C = αM + βK (5)

where α and β are prescribed by the choice of damping ratios
at two frequencies.

Finally, the global acoustic impedance matrix Z is as-
sembled based on a standard boundary element collocation
scheme. The pressure at a collocation point ~rc is given by

p(~rc) = iωρ0

∑
e

3∑
j=1

∫∫
eik|~rc−~re|

|~rc − ~re|
Nj(ξ, η)Aedξdη (6)

where ρ0 is the fluid density, k is the wavespeed, and ~re
points to the location on the element. The double integral
is computed using standard Gauss-Legendre quadrature or
modified quadrature rules for cases where the integrand is
singular.

Unlike the structural matrices, the acoustic impedance ma-
trix is fully populated due to the global nature of the acoustic
interactions. This becomes a source of computational difficulty
as the storage and solution of these systems scale with the
number of mesh nodes as O(n2) and O(n3), respectively. For-
tunately, data-sparse techniques have been developed in recent
years to address such computational bottle-necks. Namely,
hierarchical matrix techniques provide efficient data structures
and algorithms for construction, storage, and manipulation of
fully-populated matrices using low-rank approximations. We
utilize the open-source library H2Lib [6] to implement these
techniques.

B. Actuation forces and model order reduction

The membranes are excited into motion from the actuating
electrostatic force between the top and bottom electrodes. The
electrostatic pressure pes depends non-linearly on the voltage
v(t) and transverse deflection according to

pes = −ε0

2

v(t)2

(g + hisol/εr) + u(t)2
(7)

where g is the height of the physical gap between the mem-
brane and the substrate, and hisol is the total thickness of any
intervening isolation layers with relative permittivity εr.

In addition, contact forces between the membrane and
substrate can be considered with a simple non-linear contact
model [7].

pcont =
3

2
kα(u(t) + g)u̇− k(u(t) + g); u(t) < −g (8)

where α is the coefficient of restitution of the contact pair.
Here, the contact is modeled by a linear spring of stiffness k
and a damper which scales with penetration.

To consider these forces in an efficient way, it is necessary
to reduce the number of degree of freedoms in the model.
Rather than consider the forces on each node, the mesh is
partitioned into multiple sub-domains wherein the contact
forces are assumed to be uniform (see Fig. 1)–an idea first
proposed in [8]. For each pair of sub-domains, (1) is solved for
uniform loading on one sub-domain and the mean deflection
calculated on the other. After inverse Fourier transform, this
procedure will produce a set of linear time-invariant (LTI)
systems relating mean pressure to mean deflection for every
sub-domain pair, i.e. hnm(t) : pn → um.

C. An algorithm for solving the time-domain convolution
equation

The total mean deflection of each sub-domain is given by

un(t) =
∑
m

hnm(t) ∗ pm(t) (9)

where ∗ denotes linear convolution. Note that the mean
deflection of the sub-domains appear on both the left hand
side and right hand side of (9) because the mean pressure
can be expanded as the sum of the electrostatic and contact
pressures of (7) and (8).

This self-referential expression lends itself naturally to a
solution determined using fixed-point iteration. An algorithm
was developed based on this approach. Starting at an initial
time t = t0 and initial conditions un(t0) and vn(t0), a blind
estimate is calculated for the next time step by performing the
convolutions of (9) on only the known (solved for) variables
for a lag of one time step ∆t. Conceptually, this can be
understood as evolving the dynamic system to the next time
step without consideration of the instantaneous loadings at that
step. Written explicitly,

ui=0
n (T + ∆t) =

∑
m

[hnm(t) ∗ pm(t)]lag=∆t , t ∈ [t0, T ]

(10)
where i denotes the iteration number of the estimate, and T
denotes the last time for which the variables are known.

The blind estimate can be further refined by considering the
estimate as known and applying (9) directly, i.e.

ui+1
n (T +∆t) =

∑
m

[hnm(t) ∗ pm(t)]lag=0 , t ∈ [t0, T +∆t]

(11)
An important caveat of this approach is that fixed-point

iteration may not necessarily converge. More generally, an
approximate condition for convergence for an expression
xi+1 = f(xi) is given by |f ′(x0)| < 1 for the root x = x0.
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TABLE I
CMUT MATERIAL PROPERTIES AND GEOMETRY

Material properties
Density, ρ 2200 kg/m3

Young’s modulus, Y 190 GPa
Poisson’s ratio, η 0.28
Relative permittivity, εr 7.5

Geometry
Thickness, h 1 µm
Radius, rmem 30 µm
Gap, g 250 nm
Isolation thickness, hisol 300 nm

As it turns out, the inclusion of contact damping as prescribed
in (8) leads to a diverging scheme. To work around this, the
iterations are applied first without consideration of the contact
damper. The resulting damping pressure is calculated based on
this estimate and then assumed to be stationary as the estimate
is refined further.

III. RESULTS

Our model was validated against Comsol finite element
software (Cambridge, UK) for a representative circular CMUT
with material properties and geometry given in Table I. For
this comparison, the model was run using eight concentric
annular sub-domains. The sampling frequency ranged from
1 GHz to 4 GHz depending on whether contact was expected
in the simulation. Contact was modeled in Comsol using
a contact pair penalty method. The first and second axi-
symmetric resonances were determined by frequency domain
analysis to be 3.9 MHz and 15.3 MHz in vacuum, respectively,
and 1.4 MHz and 8.2 MHz in water (density = 1000 kg/m3,
sound speed = 1500 m/s).

A. Static and quasi-static operation

Stationary behavior of the CMUT was investigated by
gradual application of voltage to set DC voltage levels. The
static pull-in voltage vpull−in , defined as the maximum DC
voltage in which the electrostatic force is sustained by the
membrane stiffness, was determined to be 37.2 V by the model
and 37.1 V by Comsol. The predicted deflection profiles for
voltages below and above are shown in Fig. 2. The maximum
error was 3.7% and the mean error 1.1% as percentages of
the total gap. This error can be attributed to deviation from
classical thin plate theory.

In quasi-static operation (at frequencies significantly below
the first resonance), it is expected that the CMUT will behave
with a combination of static and dynamic behavior. To demon-
strate this case, the CMUT was driven by a 1-cycle 100 kHz
50 V sinusoidal pulse. The mean deflection of the membrane
is shown for the central region (Domain 1, r < rmem/2) and
the outer region (Domain 2, r > rmem/2) in Fig. 3. Here, the
CMUT is shown to experience dynamic pull-in and release
during the positive-going pulse which is repeated when the
polarity is reversed. The voltage which these events occur was
determined to be 39.5 V for pull-in and 23.4 V for release by
the model, as compared with 38.4 V for pull-in and 24.8 V for
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Fig. 2. Static deflection of the CMUT for various DC voltages.
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Fig. 3. Mean deflection of the central (Domain 1) and outer (Domain 2)
membrane regions for a 1-cycle 100 kHz 50 V sinusoidal pulse.

release by Comsol. The slight time delay observed between
the predicted mean displacements just after release can be
attributed to this discrepancy.

B. Dynamic operation

Behavior of the CMUT was investigated for dynamic opera-
tion with drive signals representing different proposed regimes
of operation. In each case, the drive signal consisted of a
logistic function DC bias (if applicable) followed by a 40-
cycle sinusoidal toneburst. The resulting membrane deflections
are plotted as trajectories in the voltage-deflection phase plane
which eventually converge to stable orbits representing the
predicted steady-state behavior.

To demonstrate standard linear operation, the drive pulse
consisted of a 30 V DC bias and a 1 V 1.4 MHz toneburst.
As shown in Fig. 4, after a transient response (t < 10 µs), the
membrane deflection converges to a elliptical orbit character-
istic of linear dynamics. In contrast, the CMUT can be driven
into a non-linear regime by excitation with a 30 V 0.7 MHz
toneburst (no DC bias), representative of a sub-harmonic drive
scheme that has been proposed previously [9]. This behavior is
also shown in Fig. 4, where a period-halving orbit is observed.
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Fig. 4. Phase plane trajectories for a 30 V DC 1 V toneburst (top), and a
0 V DC 30 V toneburst (bottom).

When the voltage of the toneburst is increased to 50 V,
13 V more than the pull-in voltage, the CMUT exhibits
repeated collapse and release events, characteristic of so-
called collapse-snapback operation. It has been suggested that
this mode of operation is optimal for the generation of high
output pressures due to the large surface velocities generated.
To differentiate the behavior of the center of the membrane
from the rest of the membrane, the trajectories for both the
mean deflection and the maximum deflection are illustrated in
Fig. 5a and Fig. 5b.

Finally, collapse-mode operation of the CMUT was demon-
strated through application of a 60 V DC bias and a 20 V
1.4 MHz toneburst. The trajectories for the mean and max-
imum deflection are illustrated in Fig. 5c and Fig. 5d. The
trajectories indicate that, after the initial collapse event, the
membrane remains collapsed for the remainder of the drive
signal.

IV. CONCLUSION

A scalable and generalizable non-linear model for CMUTs
operating in all regimes was presented and validated against fi-
nite element software. This model may be useful for the design
and optimization of CMUT arrays, especially in therapeutic
applications where large output pressures are strongly desired.
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