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Abstract—In the field of quantitative ultrasound (QUS), 

constructing semantic parametric maps based on local attenuation 
coefficient slope (ACS) or backscatter coefficient (BSC) modeling 
remains a challenge. These maps may be useful for detecting 
lesions or anatomical objects, or for characterizing anomalies 
within organs. The objective was to propose a methodology for 
constructing regularized parametric maps in the case of linear 
fitting models. The proposed method was tested on: i) the spectral 
Gaussian fit (SGF) BSC model, comprising the acoustical 
concentration and effective scatterer size; and ii) the spectral log-
difference (SLD) model, yielding the local ACS. Regularization 
was formulated as generalized LASSO, upon setting a locally 
constant trend constraint on regression coefficients, with variable 
Lagrangian multiplier (LM). The latter was set with a variant of 
the Bayesian Information Criterion (BIC): the LM was maximized 
as to yield a BIC no worse than that of the maximum likelihood. 
Phantoms were made with agar and graphite powder (g.p.). 
Acquisitions were performed with a Verasonics Vantage 256 
(Redmond, WA) scanner using an ATL L7-4 probe (Philips, 
Bothell, WA) driven at 5 MHz. Using 21 angles (-5o to 5o) 
compounding, 100 frames were acquired. Beamformed 
radiofrequency data were averaged over all frames. Power spectra 
were averaged over 15 scan lines, each spanning 10 pulse lengths, 
on overlapping windows. Acquisitions with same settings were 
made on a reference phantom (117GU-101 CIRS, Norfolk, VA). 
Ground truth ACS values were estimated with a planar reflection 
method yielding (in dB/cm/MHz): #1) 0.56 ± 0.06 (4.5% g.p.); and 
#2) 1.27 ± 0.09 (12% g.p.). i) SGF results: On phantoms with an 
inclusion (N = 4, #2 surrounded by #1), the contrast-to-noise ratio 
on difference in acoustic concentration (log-scale) was 2.7 ± 0.22 
(no units) with regularization, and 0.97 ± 0.13 without it. ii) SLD 
results: On phantoms with side-by-side media (N = 3), biases were: 
#1) -0.11 ± 0.04; #2) -0.26 ± 0.03; and standard-deviations (SD) 
were: #1) 0.05 ± 0.04; #2) 0.09 ± 0.02. Without regularization, 
biases were #1) -0.09 ± 0.17; #2) -0.25 ± 0.20; SD values were: #1) 
0.39 ± 0.04; #2) 0.38 ± 0.08.  

Keywords—Quantitative ultrasound (QUS), Tissue 
characterization, Local attenuation estimation, Backscatter 
coefficient (BSC) estimation, LASSO, Regularization, Parametric 
maps. 

I. INTRODUCTION 
In quantitative ultrasound (QUS), constructing semantic 

parametric maps based on backscatter coefficient (BSC) 
modeling or local attenuation coefficient slope (ACS) remains 
a challenge. These maps may be useful for detecting lesions or 
anatomical objects, or for characterizing anomalies within 
organs. The objective of this work was to propose a 
methodology for constructing regularized parametric maps in 
the case of linear fitting models. The proposed method was 
tested on: 1) the spectral Gaussian fit (SGF) BSC model [1, 2], 
comprising the acoustic concentration and effective scatterer 
size; and 2) the spectral log-difference (SLD) model [1, 3, 4], 
yielding the local ACS. 

Previous works include a framework for BSC estimation, 
based on the power law model for BSC [5], comprising a 
quadratic regularization term that is solved using dynamic 
programming [6]. A framework for local ACS estimation, 
based on the SLD method, and a total variation regularization 
term was proposed in [7] and was solved using the alternating 
direction method of multipliers (ADMMs) [8].  

In this work, regularization was formulated as generalized 
LASSO [9], upon setting a locally constant trend constraint on 
regression coefficients, with variable Lagrangian multiplier 
(LM). Then, a novel strong Bayesian Information Criterion 
(BIC) [10] was applied for model selection of the LM, thus 
yielding regularized parametric maps. 

II. THEORETICAL FRAMEWORK 

A. Power spectrum modeling 
Based on acoustical physics, the power spectrum of 

received radiofrequency signals at depth 𝑧𝑧 (cm) can be modeled 
[1] as a function of frequency, denoted 𝑓𝑓 (MHz), in the form of 
a product of 4 factors: i) a factor due to electronics (including 
the transfer function); ii) the diffraction factor, which depends 
on the transducer’s geometry; iii) the backscatter coefficient 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑓𝑓, 𝑧𝑧), which depends on the scattering medium; and iv) 
the total attenuation factor 𝐴𝐴(𝑓𝑓, 𝑧𝑧).  
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An acquisition of a reference phantom using the same 
settings as the samples’ acquisition yields, after simplifications, 
the power spectra ratio: 
 
𝑃𝑃𝑃𝑃(𝑓𝑓,𝑧𝑧)

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓,𝑧𝑧)
= 𝐵𝐵𝑃𝑃𝐵𝐵(𝑓𝑓,𝑧𝑧)

𝐵𝐵𝑃𝑃𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓,𝑧𝑧)
𝐴𝐴(𝑓𝑓,𝑧𝑧)

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓,𝑧𝑧)
.                                               (1) 

 

1) Under the SGF model, applied to the samples, one 
postulates a Gaussian BSC that depends on acoustic 
concentration, through a normalizing constant 𝐵𝐵, on speed of 
sound 𝑐𝑐  in the scattering medium, and on the effective 
scatterers’ radius 𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓. We also consider an attenuation factor 
of the form 𝐴𝐴(𝑓𝑓, 𝑧𝑧) = exp(−4𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧𝑓𝑓),  where 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 
(Neper/cm/MHz) is the total ACS. Under these hypotheses, one 
obtains [1, 2]: 
 
log 𝑃𝑃𝑃𝑃(𝑓𝑓,𝑧𝑧)

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓,𝑧𝑧) = −4∆𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧𝑓𝑓 − 0.827 4𝜋𝜋2

𝑐𝑐2
�∆𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓2�𝑓𝑓2 + ∆ log𝐵𝐵,    (2) 

 
where ∆𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎  is the difference in ACS (Neper/cm/MHz) 
between samples and the reference phantom, ∆𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓2  (m2) is the 
corresponding difference in squared effective radii of scatterers, 
and ∆ log𝐵𝐵  (no units) is the corresponding difference in 
acoustic concentration in log-scale. 
 

2) In the case of the SLD model, one considers two 
non-overlapping windows within a region of interest (ROI) at 
proximal and distal depths 𝑧𝑧𝑝𝑝  and  𝑧𝑧𝑑𝑑 , respectively. The 
attenuation factors at depths 𝑧𝑧𝑝𝑝 and 𝑧𝑧𝑑𝑑 are related as: 

 
𝐴𝐴(𝑓𝑓, 𝑧𝑧𝑑𝑑) = 𝐴𝐴�𝑓𝑓, 𝑧𝑧𝑝𝑝� exp(−4𝛼𝛼0∆𝑧𝑧𝑓𝑓),                                    (3) 
 
where 𝛼𝛼0 is the local ACS and ∆𝑧𝑧 = 𝑧𝑧𝑑𝑑 − 𝑧𝑧𝑝𝑝. Furthermore, one 
assumes that the BSCs at two depths are proportional, which 
under the Gaussian model means that the scatterers’ radius 
remains fixed within the ROI, but that the acoustic 
concentration might vary. One then obtains the relation [1, 3, 
4]: 

 
log 𝑃𝑃𝑃𝑃𝑠𝑠�𝑓𝑓,𝑧𝑧𝑝𝑝�

𝑃𝑃𝑃𝑃𝑠𝑠(𝑓𝑓,𝑧𝑧𝑑𝑑)
− log

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟�𝑓𝑓,𝑧𝑧𝑝𝑝�

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓,𝑧𝑧𝑑𝑑)
= 4∆𝛼𝛼0∆𝑧𝑧𝑓𝑓 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,               (4) 

 
where ∆𝛼𝛼0 is the difference in local ACS between the sample 
and the reference phantom. 
 

B. Data fidelity term 
In LASSO framework, the data fidelity term is the usual 

linear regression residual fit [9]: 
 
fit(𝑦𝑦,𝛽𝛽) = 1

2
∑ ‖𝑦𝑦𝑟𝑟 − 𝑋𝑋𝑟𝑟𝛽𝛽𝑟𝑟‖22
𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅
𝑟𝑟=1                                           (5) 

 
where 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅  is the number of ROIs for the estimation of 
parameters. For each ROI r, 𝑦𝑦𝑟𝑟 = (𝑦𝑦𝑟𝑟(𝑓𝑓𝑖𝑖))𝑖𝑖=1

𝑁𝑁𝐹𝐹𝑟𝑟𝑟𝑟𝐹𝐹 represents the 
observed spectral data expressed at each frequency 𝑓𝑓𝑖𝑖 (MHz) of 

the discretized usable frequency range. Moreover, the matrix 
𝑋𝑋𝑟𝑟  represents the model’s predictors (based on the set of 
frequencies), while 𝛽𝛽𝑟𝑟 represents regression coefficients (based 
on the considered model). 
 

1) In the case of the SGF model, the observed spectral 
data 𝑦𝑦𝑟𝑟(𝑓𝑓𝑖𝑖)  in the r-th ROI (at depth 𝑧𝑧𝑟𝑟 ) is the LHS of (2) 
evaluated at frequencies 𝑓𝑓𝑖𝑖. The predictors’ matrix and vector 
of regression coefficients are then given by the RHS of (2), 
which yields: 
 
𝛽𝛽𝑟𝑟 = �∆𝛼𝛼𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 0.827 4𝜋𝜋2 𝑐𝑐2⁄ ∆𝑎𝑎𝑟𝑟,𝑒𝑒𝑓𝑓𝑓𝑓

2 ∆ log𝐵𝐵𝑟𝑟�
𝑇𝑇.           (6) 

 
2) In the case of the SLD model, the observed spectral 

data is the LHS of (4). The predictors’ matrix and regression 
coefficients are obtained from the RHS of (4), which yields: 
  
𝛽𝛽𝑟𝑟 = (∆𝛼𝛼𝑟𝑟,0 𝛽𝛽𝑟𝑟,2)𝑇𝑇.                                                             (7) 
 

C. Regularization term 
In LASSO framework, the regularization term considered in 

this work is of the form [9]: 
 
reg(𝛽𝛽,λ)=λ∑ ∑ ∑ �𝛽𝛽𝑟𝑟,𝑘𝑘 − 𝛽𝛽𝑠𝑠,𝑘𝑘�𝑠𝑠∈𝑁𝑁(𝑟𝑟)

𝑑𝑑
𝑘𝑘=1

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅
𝑟𝑟=1 ,                       (8) 

 
where λ is the LM, which balances the weight of the constraint 
with respect to the data fidelity term, 𝑑𝑑 = 3 for the SGF model 
and 𝑑𝑑 = 2  for the SLD model, and 𝑁𝑁(𝑟𝑟)  denotes the set of 
previous adjacent ROIs (along both axial and lateral directions) 
to a given ROI r. This regularizing term favors naturally 
identical regression coefficients between adjacent ROIs, and 
hence causes ROIs to get fused (i.e., to share the same 
regression coefficients). For a given LM value λ, one seeks the 
vector of coefficients �̂�𝛽(𝜆𝜆) that minimizes the corresponding 
energy functional fit(𝑦𝑦,𝛽𝛽) + reg(𝛽𝛽,λ). 
 
D. Model’s selection 

The Bayesian Information Criterion (BIC) [10] yields in 
LASSO framework the expression: 
 
𝐵𝐵𝐵𝐵𝐵𝐵(λ) = 𝑁𝑁 log �fit �𝑦𝑦, �̂�𝛽(𝜆𝜆)�� + log𝑁𝑁 × 𝐵𝐵(λ),                 (9) 
 
where 𝑁𝑁 = 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁𝐹𝐹𝑟𝑟𝑒𝑒𝐹𝐹 is the total sample size in the linear 
regression problem, and 𝐵𝐵(λ) is the model’s complexity, which 
is equal in this case to the number of regression coefficients 
(i.e., the dimension 𝑑𝑑 defined in Section II-C) times the number 
of distinct fused ROIs in �̂�𝛽(𝜆𝜆).  

Model’s selection under the BIC is formulated as choosing 
the value of λ that minimizes the BIC curve [10]. To reach a 
greater number of fused ROIs, we propose a “strong BIC”, 
which we define as selecting the maximal value of λ for which 
𝐵𝐵𝐵𝐵𝐵𝐵(λ) = 𝐵𝐵𝐵𝐵𝐵𝐵(0). Thus, the LM λ was maximized as to yield 
a BIC value no worse than that obtained without any constraint. 
The actual computation of the BIC curve was performed with 
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our implementation of the path algorithm [9] using Matlab 
software (version R2018a, The MathWorks, Natick, MA). 

III. METHODS 
Phantoms were made with a mixture of agar (2%), glycerol 

(10%) and 4.5% or 12% of graphite powder (g.p.) [11]. Ground 
truth ACS values were estimated with a planar reflection 
method [12]. 

Acquisitions were performed with a Verasonics Vantage 
256 (Redmond, WA) scanner using an ATL L7-4 probe 
(Philips, Bothell, WA) driven at 5 MHz. One hundred frames 
were obtained with 21 angles (-5o to 5o) compounding. 

Radiofrequency data were f-k migrated [13] and averaged 
over all frames for noise removal. Power spectra were averaged 
over 15 scan lines, each spanning 10 pulse lengths, on 
overlapping ROIs. Acquisitions with same settings were made 
on a reference phantom (117GU-101 CIRS, Norfolk, VA). 

IV. RESULTS 

A. Phantom’s attenuation calibration 
Ground truth ACS values estimation yielded (in 

dB/cm/MHz) for the phantoms’ two distinct media: #1) 0.56 ± 
0.06 (4.5% g.p.); #2) 1.27 ± 0.09 (12% g.p.). 

B. Results 
1) Results for the SGF method: On phantoms with an 

inclusion (N = 4, #2 surrounded by #1), the contrast-to-noise 
ratio on difference in acoustic concentration (in log-scale) was 
2.7 ± 0.22 (no units) with regularization, and 0.97 ± 0.13 
without it. See Fig. 1 for examples of results. 

Fig. 1. Parametric maps based on the SGF method without (top panels A and 
B) and with the proposed regularization (bottom panels C and D). (Left) 
difference in acoustic concentration (log-scale) between an agar/graphite 
phantom and the CIRS reference phantom; (Right) difference in squared 
effective radii. 

2) Results for the SLD method: On phantoms with side-by-
side media (N = 3), biases were (dB/cm/MHz): #1) -0.11 ± 0.04; 
#2) -0.26 ± 0.03; and standard deviations (SD) were 
(dB/cm/MHz): #1) 0.05 ± 0.04; #2) 0.09 ± 0.02. Without 
regularization, biases were (dB/cm/MHz): #1) -0.09 ± 0.17; #2) 

-0.25 ± 0.20; SD values were (dB/cm/MHz): #1) 0.39 ± 0.04; 
#2) 0.38 ± 0.08. See Fig. 2 for examples of results. 

V. DISCUSSION 
The results indicate that the proposed regularization 

methodology does improve the contrast-to-noise ratio on 
difference in acoustic concentration (in log-scale) within the 
SGF framework. Moreover, the biases in local ACS, in the SLD 
framework, were similar with or without regularization, while 
SD values decreased substantially with regularization. Future 
works will include a comparison with previous regularization 
methods in QUS [6, 7]. 
 

Fig. 2. Parametric maps of local ACS based on the SLD model without (top 
panel) and with the proposed regularization (bottom panel). 
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