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Abstract—Pelvic organ prolapse (POP) decreases the quality
of life for many women. To assess POP, the levator hiatus is
segmented in a 2D plane of minimal hiatal dimensions, known
as the C-plane. In order to automate plane detection, landmark
information of key structures should be given to a plane detection
algorithm. In this work, we present a fully automatic method to
segment the urethra from a 3D transperineal ultrasound volume
using a convolutional neural network (CNN). A dataset with 35
volumes from 20 patients during the Valsalva manoeuver (i.e.
Valsalva, contraction and rest) labelled by an expert, was used for
training and evaluation in a 5-fold cross-validation process. The
3D CNN model yielded an average robust Hausdorff distance of
4.68mm (95 percentile) which was comparable to intra-observer
results.

Index Terms—Pelvic floor, 3D Convolutional neural network,
Semantic segmentation

I. INTRODUCTION

Pelvic organ prolapse (POP) is a type of pelvic floor disor-
der that decreases quality of life of many women. POP refers to
the downward descent of pelvic floor organs such as bladder,
vagina, small bowel and rectum, through the genital hiatus.
To assess the severity of POP, the levator hiatus is segmented
in a 2D plane of minimal hiatal dimensions (referred to as
the C-plane) from a 3D transperineal ultrasound volume and
the biometrics extracted from the levator hiatus are analysed
[1]. Detection of the C-plane, however, is a manual and labour-
intensive task, prone to observer variability. Hereto, the aim of
this study was to segment the urethra in a 3D volume in order
to generate context for a future C-plane detection algorithm.

To our knowledge the urethra has not been automatically
segmented in transperineal ultrasound volumes prior to this
study. However, the levator hiatus has been segmented from
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the C-plane extracted from a transperineal ultrasound volume
in the work by Bonmati et al. [2]. In this paper they used con-
volutional neural networks (CNNs) for semantic segmentation.
The method achieved a Dice score of 0.90 and results were
comparable to previous °‘state-of the-art’” work using active
shape models from B-splines by N. Sindhwani et al. [3].

Given the fact that CNNs have become the gold standard
for semantic segmentation without the need for manual ini-
tialisation, a 3D CNN was used in this study for automatic
segmentation of the urethra. Unlike the segmentation of the
levator hiatus, in this work we have a strongly unbalanced task,
i.e. the urethra volume foreground pixels in comparison to the
background pixels is extremely small and unbalanced. Thus,
in this work, we used a label-based approach to weight sam-
pling during training. Due to transperineal ultrasound having
relatively low image quality, we also employed pre- and post-
processing techniques to enhance results such as specific data
augmentation and connected component analysis. We used a
5-fold cross validation to train and validate the performance of
the CNN using transperineal ultrasound volumes. Each volume
was segmented by a clinical expert and results yielded were
compared with intra-observer results.

II. METHODS
A. Data

A dataset of 35 transperineal ultrasound volumes from 20
patients was collected. The ultrasound volumes were acquired
during the Valsalva manoeuvre (i.e. full Valsalva, rest and
contraction). The dataset consisted of 16 volumes acquired
at rest, 14 volumes at contraction and 5 at Valsalva. The small
sample of Valsalva volumes was due to the exclusion criteria
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of not considering volumes where a prolapsed bladder was
present. A prolapsed bladder severely impacts the shape of the
urethra and would make training difficult with a small dataset,
thus we start our research by concentrating on ‘healthy’
urethras. All 35 ultrasound volumes were manually segmented
using GE Vocal software by one clinical expert.

B. Network architecture

The network used in this work to segment the urethra was
HighRes3DNet by Li et al. and implemented using NiftyNet —
a Tensorflow based package for medical imaging segmentation
[5].

The network architecture, as shown in Fig. 1, uses multiple
layers of dilated convolutions and residual connections to map
the input volume to a voxel-level segmentation. The network
architecture allows for multi-scale visual feature extraction due
to the dilation factor of dilated convolutions that is increased
as layer depth increases, which leads to an increase of the
receptive field size. Residual blocks with identity mapping
are used to group every two convolutional layers. This de-
sign improves training speed and ensures the propagation
of information during training is smooth. Thus, the network
has a relatively large effective receptive field; can generate
high resolution feature maps; and can be trained efficiently.
For more information on this architecture please refer to the
original paper [4].

C. Training

Data augmentation is necessary when the training dataset is
of limited size. This process increases the number of training
volumes for the CNN to learn from. Therefore, the data
augmentation must be representative of possible ‘new’ data. In
this work we used randomised intensity scaling and whitening
as the data augmentation. The maximum and minimum scaling
percentage was set to 10%.

The training of our model was implemented using NiftyNet
on a desktop with a 24GB NVIDIA Quadro P6000. NiftyNet
is a Tensorflow-based program that is designed to facilitate
patch-based medical image analysis [5]. Due to GPU limi-
tations, the original transperineal ultrasound volume was too
large to load into one sampling window without heavy down
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Fig. 1. The network architecture used for volumetric image segmentation
in this paper. The network consists of dilated convolutions and residual
connections. The architecture allows for multi-scale visual feature extraction
as the dilation factor of dilated convolutions increases as layer depth increases.
For more detail please refer to work by Li et al. [4].

sampling. As such, a patch-based segmentation was used and
we had to make sure that the urethra was sampled more than
the background voxels as to ensure the network learnt key
features related to the urethra.

To accomplish this we used weighted sampling where the
ground truth mask provided information for sampling. The
patches supplied as input to the network were weighted on
the urethra ground truth position during training. Weighted
sampling was used to make the problem more balanced than
the original highly unbalanced problem, thus it improved
network performance and efficiency [6-8]. The loss function
used was Dice with the definition given by Milletari, et al.
this Dice loss layer performed well for unbalanced tasks. For
more information please refer to [9].

D. Evaluation

The best performing model was found by selecting the
epoch with the best Dice loss on the validation set. Evaluation
was performed in a 5-fold cross validation, in which the 5
models were obtained by training the network 5 times, with a
different set of volumes for training, validation and inference.
Thus, after all 5 cross validation models had been trained, 35
automatic 3D urethra segmentations were obtained.

E. Post-processing

For each automatic segmentation obtained, segmentation
post-processing morphological operators were applied. To fill
holes a flood-fill operation on background pixels that are
enclosed by foreground pixels was applied and unconnected
collections of pixels were removed by selecting the largest
component using connected component analysis as shown in
Fig. 2.

F. Metrics

Segmentation results were evaluated using a region-based
metric (i.e. the Dice coefficient) and a surface distance-
based metric (i.e. robust Hausdorff distance). The Hausdorff
distance, h, was used to measure the upper limit of the
incorrect positioning, as it measures a distance between two
sets of edge points from the ground truth 3D mask, A and
the output 3D mask generated from the network, B.

Fig. 2. Post processing effect on network output, A) shows the initial output
of the network and B) shows the filtered result after connected region filtering
and filling holes operations are applied.
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The original Hausdorff distance is highly sensitive to
noise and outliers and is defined as:

h(A,B) = i — 1

(A, B) = max min | p —q | (D

Having a small Hausdorff distance indicates a good ap-

proximation i.e. for a point in A there is a point on B

within radius defined in (1) [10]. Unlike Hausdorff distance,

Robust Hausdorff distance is less sensitive to outliers. ‘Robust’

means it uses the ‘Kth’ percentile of the distances and not the
maximum distance [10]. It is defined as:

h(A,B) = K% ydg(a), 2)

where dg(a) denotes the minimum distance at position a to the
position set B, and K", represents the Kth ranked value of
dg(a) [11]. In our evaluation we use the 95th percentile. Dice
expresses the overlap between the ground truth 3D mask, A
and network output 3D mask, B. This metric is on a pixel-wise
basis and defined as:
2|A N B|

PAD = e @
where |ANB) is the overlap of pixels between the ground truth
3D mask, A and network output 3D mask, B and |A| + |B|
is the union of pixels (i.e. the total sum of pixels from the
ground truth 3D mask, A and network output 3D mask, B).

G. Intra-observer analysis

Evaluation was recorded by measuring the difference be-
tween computer and observer. The manual and automatic
segmentation results were compared to retrieve computer-to-
observer performance metrics. These results were compared to
our ‘gold’ standard of the expert intra-observer variability. To
attain metrics for intra-observer variability we asked the expert
to segment the urethra a second time on a random selection
of five transperineal ultrasound volumes.

III. RESULTS

Results of the performance metrics averaged over all folds
can be seen in Table I. Intra-observer variability using the
same performance metrics as Table I is shown in Table II. Fig.
3 shows an example of an automatic segmentation overlaid
on the corresponding input transperineal ultrasound volume.
Fig. 4 Shows the corresponding overlap between the manually
segmented urethras and the automatic segmented urethras for
three different transperineal ultrasound volumes.

TABLE I
TABLE I. AVERAGE PERFORMANCE OF THE HIGHRES3DNET
BY EMPLOYING COMPARISON WITH THE MANUAL
SEGMENTED LABELS FOR EACH ULTRASOUND VOLUME.
STANDARD DEVIATION OF RESULTS GIVEN IN SQUARE

BRACKETS.
Robust Hausdorff 95 per- | Standard Hausdorff Dis- | Dice
centile (in mm) [SD] tance (in mm) [SD] [SD]
4.68[0.49] 7.56[1.65] 0.65[0.08]

TABLE I
TABLE II. AVERAGE INTRA-RATER VARIABILITY BETWEEN 5
MANUALLY SEGMENTED URETHRAS ON A TEST-RETEST
BASIS. STANDARD DEVIATION OF RESULTS GIVEN IN SQUARE

BRACKETS.
Robust Hausdorff 95 per- | Standard Hausdorff Dis- | Dice
centile (in mm) [SD] tance (in mm) [SD] [SD]
6.84[9.68] 9.25[10.65] 0.60[0.12]

Fig. 3. Shows a deep learning network result (white) superimposed on top
of the input transperineal ultrasound volume.

Fig. 4. Shows the deep learning network result (white) superimposed over the
corresponding ground truth mask for three separate volumes. A) represents
the lowest performing result (Hausdorff 95th percentile- 11.4mm and Dice
loss — 0.40) B) represents the highest performing result (Hausdorff 95th
percentile- 2.6mm and Dice loss- 0.78) C) represents an average performing
result (Hausdorft 95th percentile- 5.09 mmm and Dice loss- 0.62).

IV. DISCUSSION

Manual segmentation of transperineal ultrasound volumes
in 3D can be challenging due to noise, low resolution and
observer variability. We have presented a fully automatic
method using a CNN, to segment the urethra in 3D from a
transperineal ultrasound volume. This work will be used to
develop an automatic plane detection algorithm by supplying
landmark knowledge via semantic segmentation. As manual
C-plane detection is a time-consuming task with observer
variability, this future work will improve and speed up the
pelvic floor assessment process for many women.

In this paper, we used HighRes3DNet, a powerful network
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for semantic segmentation [4]. It is to our knowledge the first
time this network has been used on transperineal ultrasound
volumetric data. The implementation of the network and train-
ing procedure had to be adapted for this strongly unbalanced
problem (i.e. small foreground to background pixel ratio). To
solve this, we sampled our network during training in the
region of the ground truth foreground and used a Dice loss
layer.

In this work we compare our automatic segmentation
approach against the observer’s own variability calculated
by having the observer re-segment 5 random transperineal
ultrasound volumes. Comparing the computer-to-observer dif-
ference (Table I) with intra-observer differences (Table II), we
show that the automatic approach performs better than the
manual segmentation retest.

Surprisingly the standard deviation for intra-observer vari-
ability is 10 times larger than the CNNs standard deviation.
When all re-tests from the observer were investigated it was
highlighted that this result was due to one volume having
a particular high standard Hausdorff distance of 32.01mm
and 95th percentile Robust Hausdorff distance of 26.45 mm.
Therefore when this result was excluded from the intra-
observer variability performance metrics, the new standard
Hausdorff distance was 4.56 [1.91] mm and 95th percentile
Robust Hausdorff distance was 2.86 [1.51] mm. The high
Hausdorff Distances were due to an error during manual
segmentation of one volume using GE Vocal software, this
highlights an issue with the urethra 3D segmentation protocol,
thus in future work we aim to check the quality of all man-
ual segmentations before training and have several observers
performing manual segmentation on a proportion of the data
to generate inter-observer variability performance metrics.

V. CONCLUSION

In this research, we present an automatic approach us-
ing a convolutional neural network to segment the urethra
from a 3D transperineal ultrasound volume. The task was
strongly unbalanced and to overcome this we implemented
several techniques to ensure features from the urethra were
learnt during training. The performance metrics show the
automatic approach is comparable to manual segmentation by
comparison of observer-to-computer and observer-to-observer
performance metrics.
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