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Abstract—Ovarian cancer is one of the most commonly oc-
curring cancer in women. Transvaginal ultrasound is used as a
screening test to detect the presence of tumors but, for specific
types of ovarian tumors, malignancy can only be asserted through
surgery. An automatic method to perform the detection and
malignancy assessment of these tumours is thus necessary to
prevent unnecessary oophorectomies.

This work explores the U-Net’s architecture and investigates
the selection of different hyperparameters for the ovary and the
ovarian follicles segmentation. The effect of applying different
post-processing methods on beam-formed radio-frequency (BRF)
data is also investigated.

Results show that models trained only with BRF data have the
worst performance. On the other hand, the combination of B-
mode with BRF data performs better for ovary segmentation. As
for the hyperparameter study, results show that the U-Net with 4
levels is the architecture with the worst performance. This shows
that to achieve better performance in the segmentation of ovarian
structures, it is important to select an architecture that takes into
account the spatial context of the regions of interest. It is also
possible to conclude that the method used to analyse BRF data
should be designed to take advantage of the fine-resolution of
BRF data.

Index Terms—B-mode ultrasound data, beam-formed ultra-
sound data, image segmentation, convolutional neuronal net-
works, ovarian cancer

I. INTRODUCTION

Ovarian cancer is one of the most commonly occurring
cancer in women. The majority of ovarian cancers grows as
a cystic mass, resulting from an abnormal development of
ovarian follicles [1]. Both ovarian cysts and follicles are fluid-
filled structures but cysts do not contain a oocyte, and contain
abnormal tissue [2].

Typically, transvaginal ultrasound B-mode images are used
for diagnosis of ovarian cancer. However, for specific types
of ovarian tumors, malignancy can only be asserted through
surgery. The majority of the cystic masses detected by B-mode
ultrasound (US) screening are benign, but such uncertainty
of diagnosis leads to unnecessary oophorectomies [3]. An
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automatic method to perform the detection and malignancy
assessment of these masses is thus necessary.

Segmentation of ovarian follicles on US images entails
several challenges, namely the low signal-to-noise ratio of
US images, the high variability of the shape and size of the
follicles and the presence of hypoechoic structures besides
follicles, such as vessels and the bladder.

The state-of-the-art methods for the automatic segmentation
of ovarian follicles are generally focused on gradient and
texture analysis integrated in multi-stage algorithms [4], [5],
energy minimization techniques such as active contour [6],
[7] and graph cut optimization [8]. The methods proposed
in [6] and [7] also take advantage of deep learning techniques
through the use of a multilayered perceptron (MLP) but in
both cases the MLP is only used to classify the previously
selected regions of interest as follicle or non-follicle. Among
these, the best performing method [7] reported an accuracy of
98.3%.

Additionally, in [9] an end-to-end deep-learning approach
is proposed for the segmentation of ovarian structures, which
reports a mean Dice score of 0.784 for the follicles.

The type of images used in the state-of-the-art methods
are strictly B-mode US images, in some cases employing
image enhancement methods for denoising and contrast enhan-
cement. However, beam-formed radio-frequency (BRF) is a
raw type of US data, which includes both structural (lower-
frequency) and textural (higher-frequency) information.

This study assesses the importance of the application of
post-processing techniques to US data and of the selection of
U-Net’s hyperparameters on the performance of a method fully
based on the U-Net for the segmentation of the ovary and the
ovarian follicles.

II. METHODS

This section presents the methodology used in this study,
including a description of the dataset, the convolutional neural
network implemented, and also the selected loss function and
hyperparameters.
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A. Dataset

The dataset used is based on 107 beam-formed radio-
frequency (BRF) transvaginal US images of the ovary. These
images were acquired at Centro Hospitalar de São João, with
consent of the patients, while these attended first time appoint-
ment for fertility treatment planning. Each image contains
one ovary with single or multiple follicles. The original BRF
data was acquired with an EC9-5/10 Endovaginal Microconvex
transducer (frequency range 9-5 MHz and image field of 124°).
The acquired BRF images are 21.7 mm wide, and between
58.8 mm and 107.1 mm of depth, with the original image
dimensions of 192×[2000, 6200] px.

(a) (b)

Fig. 1: Example of dataset images. On the left, post-processed
linear B-mode image. On the right, the corresponding linear
B-mode image with the ovary ground-truth superimposed in
green and the follicle ground-truth in red.

Three different types of images were extracted from the
original BRF data, namely, absolute BRF, B-mode and post-
processed B-mode.

Absolute BRF (or BRF) is obtained by computing the
absolute value of the original BRF data and normalizing the
obtained intensity to the range [0, 255].

B-mode linear data was obtained by applying quadrature
signal demodulation and filtering with a Hamming window
of the original BRF data, followed by envelope detection
and log compression. To produce the post-processed B-mode
images, Contrast Limited Adaptive Histogram Equalization
and a despeckling filter [10] were applied to the linear B-mode
images (see Fig. 1.a).

The three versions of the data were fed as input to the
network either individually, the three combined into a 3D
array, or in combinations of two different versions. All images
were resized to 512×512, to normalize the resolution of the
input data.

The ground-truth (GT) of follicles and ovary were delinea-
ted by a medical expert, as shown in Fig. 1.b. The dataset
division was as follows: 92 images were used for 5-fold cross-
validation and 15 for test.

B. Convolutional Neural Network

The Convolutional Neural Network (CNN) used is the U-
Net, typically used for segmentation tasks in the biomedical
field. The implemented U-Net architecture is similar to the
original [11], only adding optimal zero-padding to preserve
the image spatial size.

The U-Net (used as baseline architecture) begins with
a contracting path composed by four down-sampling steps,
whose output is then passed to an expanding path composed
by four up-sampling steps, resulting in 5 levels of resolution.
At each down-sampling/up-sampling step, two sequences of
convolution (3×3 kernels), batch normalization and rectified
linear unit (ReLU) are computed. In each down-sampling and
up-sampling step occurs, respectively, the two-fold increase
and reduction of the number of features. Each step of the
contracting path is followed by max-pooling with a 2×2 kernel
and stride of 2, and each step of the expanding path is followed
by 2D transposed convolution with a scale factor of 2.

At the last step of the U-Net, two sequences of convolu-
tion, batch normalization and rectified linear unit (ReLU) are
performed, followed by a convolution with a 1×1 kernel and
stride of 1, and the softmax function. The final output consists
of a 512×512 image with two classes (follicle/non-follicle or
ovary/non-ovary).

For this study, three variations of the baseline were tested,
namely:

• Kernel size of convolutions of 5×5
• Depth of 4 levels of resolution
• Depth of 6 levels of resolution

C. Learning framework

All models were trained using cross-entropy (CE) as loss
function:

CE =

N∑
i

C∑
j=1

tij log(sij) (1)

where N corresponds to the number of pixels in the image, C
is the number of output classes, tij is the pixel’s ground-truth
value for that class and sij is the pixel’s predicted probability
score for that class.

The batch size was set to 4 images, except for models with
the following characteristics, in which it was set to 2, due to
equipment limitations:

• Baseline architecture (with input of the combination of
B-mode and BRF, the combination of B-mode and post-
processed B-mode and the combination of post-processed
B-mode and BRF)

• Architecture with 6 levels of resolution (for all types of
input data)

The initial learning rate was set to 0.001, and decreased
by a factor of 4 every time the validation loss improved less
than 10−3. For the optimization of the U-Net’s parameters, the
Adaptive Moment Estimation (Adam) optimizer [12] is used.
The early stopping method implemented consists in stopping
training after 20 epochs without improvement of the validation
loss, with a maximum number of 100 epochs.

The implementation of this study was done in Python 3.6.6
using Pytorch 0.4.1.

III. RESULTS

For the evaluation of the models’ performance, test results
were binarized with a threshold of 0.5 and compared against
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the GT using the Dice Similarity Coefficient (DSC). For
models’ performance analysis the mean DSC was computed
across the 5 folds of cross-validation.

A paired two tailed t-test analysis was used to compare the
performance of the different models, being the null hypothesis
that their performance was equal. The alpha level for all tests
was set at 0.05.

(a)

(b)

Fig. 2: Mean DSC for the test-set of follicle (a) and ovary (b)
segmentation results for each trained model.

The bar plots with the mean DSC of the images in the
test-set for each of the trained models for follicle and ovary
segmentation are found in Fig. 2. In this document, ”Bm”,
”Proc” and ”All” refer to the B-mode, post-processed B-
mode and the combination of the three types of input data,
respectively. Furthermore, ”5×5 kernel”, ”4 levels” and ”6
levels” refer to the three variations of the baseline U-Net’s
architecture.

Table I shows the statistical difference found when com-
paring the different architecture hyperparameters, according
to the corresponding DSC results. Results show that when
comparing the U-Net with 4 levels of depth against the
others, the former has a significantly worse performance,
being especially significant in the case of ovary segmentation.
Among the other tested architectures, no significant difference
was found.

TABLE I: p-value found for comparison between the tested
U-Net’s hyperparameters, for each type of input (alpha level
was set at 0.05). Bold identifies the rejected null hypothesis
cases.

p-value for
follicle segmentation

p-value for
ovary segmentationInput

type
U-Net’s
hyperp. 6

levels
5x5

kernel
4

levels
6

levels
5x5

kernel
4

levels
baseline 0.919 0.448 0.976 0.722 0.217 0.01
6 levels - 0.537 0.925 - 0.5 0.047All

5x5 kernel - 0.525 - 0.008
baseline 0.422 0.099 0.008 0.306 0.665 0.023
6 levels - 0.74 0.085 - 0.523 0.043Bm

&BRF 5x5 kernel - 0.098 - 0.003
baseline 0.503 0.41 0.744 0.341 0.151 0.045
6 levels - 0.8 0.281 - 0.317 0.019Bm

&Proc 5x5 kernel - 0.332 - 0.003
baseline 0.582 0.037 0.572 0.082 0.119 0.139
6 levels - 0.081 0.216 - 0.741 0.058BRF

&Proc 5x5
kernel - 0.017 - 0.028

baseline 0.9 0.922 0.033 0.943 0.78 0.006
6 levels - 0.925 0.264 - 0.864 0.059Bm

5x5 kernel - 0.209 - 0.029
baseline 0.649 0.17 0.003 0.146 0.079 0.029
6 levels - 0.077 0.069 - 0.837 0.0BRF

5x5 kernel - 0.008 - 0.002
baseline 0.391 0.551 0.072 0.668 0.243 0.0
6 levels - 0.932 0.18 - 0.083 0.005Proc

5x5 kernel - 0.363 - 0.001

TABLE II: p-value found for comparison between the types of
input, for baseline U-Net’s hyperparameters (alpha level was
set at 0.05). Bold identifies the rejected null hypothesis cases.

p-valueInput
type Bm

&BRF
Bm

&Proc
BRF

&Proc Bm BRF Proc

All 0.106 0.781 0.729 0.754 0.034 0.457
Bm&BRF - 0.042 0.052 0.079 0.002 0.154
Bm&Proc - 0.38 0.962 0.076 0.733

BRF&Proc - 0.643 0.109 0.322
Bm - 0.031 0.849

Ovary

BRF - 0.038
All 0.361 0.17 0.088 0.552 0.01 0.845

Bm&BRF nan 0.112 0.155 0.601 0.001 0.454
Bm&Proc nan 0.9 0.202 0.038 0.627

BRF&Proc nan 0.152 0.059 0.347
Bm nan 0.006 0.527

Follicle

BRF nan 0.017

Table II shows the statistical difference found when com-
paring the different types of input data, according to the
corresponding DSC results. Results show that models trained
only with BRF data have the worst performance, both for the
segmentation of follicles and of the ovary. Besides that, no
other input type proved to be significantly better for follicle
segmentation. On the other hand, the combination of B-mode
with BRF data performs better for ovary segmentation.

Examples of the best and worst results for follicle and ovary
segmentation are presented in Fig. 3. In these, for comparison
between GT and segmentation results, true positives, false
positives and false negatives are represented in yellow, red
and green, respectively.

IV. DISCUSSION

This paper presents a detailed performance comparison
between models with different U-Net’s architecture hyperpa-
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(a)

(b)

(c)

(d)

Fig. 3: Best and worst DSC scores for (a-b) ovary and (c-d)
follicle segmentation.

rameters and type of input data.
The results of the study of the type of input data demonstra-

te that exclusive use of unfiltered data, such as BRF, is
not suitable for follicle and ovary segmentation. However,
for ovary segmentation, the improved performance of BRF
when combined with B-mode reveals the importance of high-
frequency data for the recognition of texture information
of the ovarian stroma. The use of post-processed B-mode
revealed to be ineffective. This could be due to either the low
performance of the U-Net or an inadequate enhancement of
the characteristics such as texture and edges.

Regarding the study of U-Net’s architecture hyperpara-
meters, the lower performance of the U-Net with 4 levels
of resolution demonstrates that the lower complexity of the
CNN results in an insufficient analysis of the data and of the
spatial context of the regions of interest. The 5 levels used
in the baseline architecture are sufficient to allow a proper
comprehension of the data, given that the use of the U-Net

with 6 levels did not result in further improvement.

V. CONCLUSION

This work presents a comprehensive study of the effect
of the selection of the U-Net’s architecture hyperparameters
(such as depth and kernel size) and of the use of processing
techniques on US data (including the conversion from BRF
to B-mode, filtering and contrast enhancement techniques) for
the segmentation of the follicles and the ovary.

It was concluded that to achieve better performance in the
segmentation of these structures, it is important to select an
architecture that can take into account the spatial context of
the regions of interest. It is also possible to conclude that the
method used to analyse BRF data should be designed to take
advantage of the fine-resolution of BRF data.
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