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Background, Motivation and Objective

Three-dimensional (3D) passive cavitation imaging (PCI) is a promising approach for online monitoring
and control of microbubble (MB)-mediated focused ultrasound (FUS) therapy [1,2]. Previous studies
correlating PCI data with bioeffect distributions following FUS + MBs have acquired channel data over
a small fraction of the total FUS on-time (e.g., 0.01-6% at the start of each pulse [3-5]) due to hardware
limitations. Here we investigate how the acoustic emissions acquisition window impacts the ability of
3D PCI data to predict the volume of tissue damage following MB-mediated nonthermal brain ablation.

Statement of Contribution/Methods

Experiments were performed on craniotomized rabbits (3-4 kg) using a clinical-scale prototype FUS
brain system [2]. Pulsed FUS (612 kHz, 10 ms pulses every 1 s for 120 s) was electronically steered
over a 2 x 2 square grid (6 mm side length) starting concurrently with MB infusion (0.2 ml/kg
Definity™, 90 s) via 3D PCl-based exposure calibration [2]. Exposures were carried out at
0/50/100/150% of the pressure required to detect subharmonic activity in vivo (psw), and acoustic
emissions were acquired over the entire duration of FUS on-time. Tissue damage volumes assessed via
3T MRI and histology (48 hr post-FUS) were compared with 3D PCI data generated retrospectively
from different acoustic emissions acquisition windows (i.e., variable onset/duration).

Results/Discussion

To*-weighted MRI displayed signal hypointensities induced by exposures at p > 100% psw [Fig.1A],
which were associated with regions of red blood cell extravasations and tissue necrosis on H&E sections.
3D PCl data generated by processing fully-sampled acoustic emissions correlated linearly with the MRI-
and H&E-assessed tissue damage volumes [Fig.1B]. Under-sampling of the acoustic emissions data
(i.e., acquisition window duration < FUS on-time) introduced regions of false positive/negative signal
in the 3D PCI data [Fig.1A,C]. Our results underscore the importance of maximizing the proportion of
FUS on-time over which acoustic emissions are acquired when performing PCI for guiding MB-
mediated FUS therapy.
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Fig 1. (A) Coronal T,*w MRI with 3D PCI data overlaid (maximum intensity projection over entire brain). Contours of 3D PCI data reconstructed with

1% (red) and 100% (green) of the FUS on-time are plotted (1% = 0.1 ms at start of each pulse). (B) Correlation of MRI (T,*w hypointense) and histology
(H&E necrotic region) tissue damage volumes with 3D PCI data (acquisition window = 100% total FUS on-time). (C) True positive rate (TPR) and false
detection rate (FDR) as a function of the acquisition window duration (gold standard = 100% window). Data in (B,C) are from 15 targets over 5 animals.
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