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Abstract— Osteoporosis is the most common metabolic bone 

disorder. It affects both cortical and trabecular bone and is 

characterized by low bone mass, tissue degradation, deteriorated 

macroscopic mechanical properties, and altered micro-

architecture [1], [2], [3], [4].  Loss in bone mass leads to frequent 

fracturing, higher mortality rates and reduction in life expectancy 

[5], [6], [7].  The goal of this study is to move towards better 

diagnosis of osteoporosis through a data driven approach.  Two 

different configurations of the same artificial neural network were 

used to take advantage of the relationship between frequency 

dependent attenuation and micro-structural properties such as 

porosity, pore density, pore diameter, and standard deviation of 

pore diameter. Finite difference simulation were conducted using 

in the 1-8MHz frequency range.  The frequency-dependent 

attenuation data was used to create a 1x8 feature vector that was 

inputted into the neural network.  Then a recursive feature 

elimination was used to optimize the network and identify the most 

relevant frequencies.  Our results indicate that the most important 

frequencies are 1, 3, 4, and 8 MHz.  A new 1x4 feature vector 

containing only data from these frequencies was used.  Both 

configurations accurately predict pore diameter, porosity, and 

standard deviation but were less accurate on pore density.  Overall 

the network using the 1x4 feature vector outperformed the one 

using the 1x8 when comparing results, computational efficiency, 

and accuracy. 

Keywords—Neural network, machine learning, inverse problem, 

I. INTRODUCTION 

Osteoporosis is the most common bone metabolic disorder. 
It is characterized by tissue degradation, low bone mass, and 
altered micro-architecture in cortical and trabecular bone.  These 

changes lead to a greater occurrence of fractures, and a higher 
mortality. Thus early diagnosis and monitoring of osteoporosis 
is vital. Currently osteoporosis is diagnosed using a variety of 
methods. DXA(Dual X-Ray Absorption) is used to evaluate 
bone mineral density (BMD). High resolution peripheral 
quantitative computed tomography (HR-pQCT) and magnetic 
resonance imaging (MRI) can be used to characterize bone, but 
are associated with major issues, MRI lacks resolution, CT 
based methods cannot be used repeatedly due to radiation, DXA 
can assess BMD however BMD alone is only a partial reflection 
of the degree of osteoporosis and the likelihood of fracture. In 
addition to BMD, bone microstructure is now recognized as a 
marker of osteoporosis.  Quantitative ultrasound has been used 
to evaluate bone microstructure.  However, more work is needed 
to solve the inverse problem to extract micro-structural variables 
such as pore diameter, pore density, and porosity from 
ultrasound parameters. 

Neural networks have been extremely useful in many 
different settings to date.  Specifically, they can provide clinical 
level classification accuracies of skin and breast cancer.  They 
achieve this through their ability to identify patterns and 
relationships in complex data sets. 

This study aims to characterize micro-architectural 
properties of cortical bone such as pore diameter, pore density, 
standard deviation of pore diameter, and porosity, from 
ultrasound attenuation measurements using an artificial neural 
network (ANN). 2D finite-difference time-domain simulations 
were conducted to calculate the frequency-dependent 
attenuation in the range of 1-8 MHz in poly-disperse structures 
(non-uniform distribution of pore diameter) obtained from high 
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resolution CT scans of human cortical bone. Using image 
processing, the distributions of pore diameter, porosity and pore 
density were calculated. The attenuation data combined with the 
porosity parameters were used to build the training data set. The 
dataset consisted of 960 polydisperse structures, extracted from 
960 CT slices of human cortical bone.   

 This data set can be used to solve an inverse problem using 

machine learning.  Since we have a large data set with known 

microstructural properties (obtained via high resolution CT), we 

can use supervised learning to map the input (the frequency 

dependent attenuation), to the output (the features of  cortical 

porosity), and find relationships between the two. 

II. MATERIALS AND METHODS 

 All simulations of ultrasound propagation through structures 
mimicking cortical bone were carried out using SimSonic, an 
open source simulation software based on FDTD numerical 
methods. The simulated media were binary structures obtained 
from high resolution CT imaging of human femur [8]. The solid 
phase was given the properties of pure bone, density of 1.85 g/ml 
and speed of sound 4000 m/s, and the fluid filled pores were 
given properties of water, density of 1 g/ml and speed of sound 
of 1500 m/s. Absorption coefficients were attributed to both 
solid and fluid phases (10dB/cm/MHz for the solid phase and 
0.1 dB/cm/MHz for the fluid phase). Both scattering and 
absorption (visco-elasticity) were therefore accounted for in the 
ultrasonic attenuation. 

 
Figure 1 Poly-disperse bone schematic geometry 

 

 Simulations were carried out in the 1–8MHz range with 
1MHz frequency intervals. The transmitted wave was a 
Gaussian ultrasonic pulse with a -6 dB, 20% bandwidth. 

We used the resulting frequency dependent attenuation as 
our input feature vector into a neural network. We split our data, 
using 70% for training, 21% for testing, and 9% for validation 
and ran it for 6000 epochs.  The neural network consists of 3 
fully connected layers of 24, 12, and 6 neurons followed by an 
output layer that gives pore diameter, pore density, porosity, and 
the standard deviation of pore diameter. 

After running this initial configuration, we sought to 
determine the driving parameters of our model by optimizing 
our feature selection.  To do this we performed a recursive 
feature elimination (RFE) to reduce the size of the feature 
vector.  This method uses model accuracy to identify which 
inputs contribute the most to each output. 

Using this we were able to rank the features against each 
other on their abilities to predict each of the outputs.  Finally, we 
reconfigured the neural network with this reduced feature vector 
by changing the input dimension and only running it for 4000 
epochs. We then compared its results to the original 
configuration. 

III. RESULTS AND DISCUSSION 

 Fig2. shows the frequency dependent attenuation for 

two different structures (similar pore densities but different 

average pore diameter), resulting from the simulations. As 

expected, the behavior of attenuation as a function of frequency 

is a function of the porosity.  
 

 

Figure 2: Frequency-dependent attenuation for two different porosities.  
 

The comparison between true and estimated (by the ANN) 
parameters of the microstructure is shown in Fig.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Top: true porosity vs porosity predicted by neural network with 1x8 

feature vector. Bottom: true pore density vs pore density as predicted by 

neural network with 1x8 feature vector. 
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Overall the network was able to predict the parameters with 
very good accuracy.  The mean squared and mean absolute error 
were 2.05% and 0.10% respectively. 

Then, by performing the recursive feature elimination, we 
discovered that the accuracy stopped increasing significantly 
after the feature vector reached a size of 1x4, as shown in Fig 4. 

 

 

 

 

 

 

 

Figure 4 number of features vs error of the mode 

Additionally, we used the recursive feature elimination to 
rank all the frequencies against each other for their ability to 
predict each parameter correctly.  These scores were added up 
to identify the top 4 frequencies, shown in Table 1. 

We then retrained the neural network using only these 4  

Table 1 Resulting rankings of the recursive feature elimination, with top 4 
frequencies highlighted 

 

frequencies (1,3,4 and 8 MHz) as the input feature vector.  The 
results of this new network are shown in Fig 5. This new 
configuration had similar characteristics to the first one, they 
both have higher accuracy on porosity than on pore density.  The 
1x4 configuration had a higher mean squared error of 3.54% and 
higher mean absolute error of 0.13%. 

Feature 

vector 

size 

Pore 

Density 

(R2) 

Porosity 

(R2) 

Pore 

Diameter 

(R2) 

Standard 

Deviation 

(R2) 

1x8 .94 .99 .96 .97 

1x4 .89 .99 .96 .98 

Table 2 R2 values of the true vs predicted values of the micro-structure for 
the 1x8 feature vector input. 

The comparison of performance across all parameters, is 
shown in Table 2. The 1x8 configuration outperforms the 1x4  
configuration in for the prediction of pore density, but both 
models don’t predict pore density as well as the other 
microstructural features. For the prediction of all the other 

parameters the 1x4 performs as well or better than the 1x8, with 
the added benefits of faster run time and less risk of overfitting 

 

Figure 5 (Top) true porosity vs porosity predicted by neural network with 1x4 
feature vector. (Bottom) true pore density vs pore density as predicted by 

neural network with 1x4 feature vector. 

IV. CONCLUSIONS 

An artificial neural network can be trained to match 
frequency-dependent attenuation values to features of cortical 
porosity. Two configurations were evaluated, using respectively 
4 and 8 values of attenuation at frequencies ranging between 1 
and 8 MHz. Comparing the results of the neural network for 
each configuration, we see that the neural network trained on 
frequencies 1 MHz, 3 MHz, 4 MHz, and 8 MHz  matches or 
outperforms the neural network trained on frequencies 1-8 MHz.  
In both configurations the pore density predictor has a lower R2 
value relative to the other results, especially at lower pore 
densities (ranging from 3-10 pores/mm2).  This could indicate 
that frequency dependent attenuation is not as influenced by 
pore density as it is by average pore diameter.  The 1x4 network 
is less prone to overfitting, and less computationally intensive.  
Overall this algorithm could provide a tool to ultrasonically 
predict micro-structural parameters of bone and could be 
combined with other methods to help us better understand and 
more accurately diagnose osteoporosis in its early stages. 
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