
 

Blind source separation-based tracking of ARFI-
induced displacements for improved automatic 

delineation of carotid plaque components in humans, 
in vivo 

 

Gabriela Torres 
Joint Department of Biomedical Engineering 

University of North Carolina and North 
Carolina State University 

Chapel Hill, NC, USA 
 
 

Tomasz J. Czernuszewicz 
Joint Department of Biomedical Engineering 

University of North Carolina and North 
Carolina State University 

Chapel Hill, NC, USA 
 
 

Caterina M. Gallippi 
Joint Department of Biomedical Engineering 

University of North Carolina and North 
Carolina State University 

Chapel Hill, NC, USA 

 
Abstract— Atherosclerotic plaque rupture potential is 

conferred by plaque composition and structure. We have 
previously shown in humans in vivo that carotid plaque 
components can be automatically delineated by a support vector 
machine (SVM) classifier considering normalized cross-
correlation (NCC)-derived measures of ARFI-induced 
displacement. We now extend our prior work by hypothesizing 
that classification is improved by using displacements derived 
using blind source separation (BSS). In 20 carotid plaques imaged 
in vivo in patients undergoing carotid endarterectomy (CEA) were 
imaged prior to extraction, and specimens were harvested after 
CEA for histological processing. ARFI displacement profiles were 
calculated from each of the first five principal components of the 
RF data and used as inputs to the SVM classifier. The classifier 
was evaluated by 5-fold cross-validation, with the histological 
samples acting as gold standards. From the output SVM likelihood 
matrices, ROC curves were calculated for separating collagen 
from calcium and lipid-rich necrotic core from intraplaque 
hemorrhage. For all examined plaques, inputting displacement 
profiles derived from the first four eigenvectors to the SVM 
classifier increased sensitivity and specificity over using NCC-
derived displacement profiles. These results suggest that using 
BSS-derived displacement profiles as inputs to the SVM classifier 
improves discrimination of carotid plaque components that are 
correlated to vulnerability for rupture.  

Keywords—ARFI imaging, carotid plaque, blind source 
separation. 

I. INTRODUCTION 
Atherosclerosis is the most common cause of cardiovascular 

diseases and of death worldwide [1]. Unfortunately, 
atherosclerotic conditions usually stay silent until very late 
stages when plaque rupture can cause ischemic events. The 
asymptomatic nature of atherosclerosis makes it challenging to 
prevent, identify, monitor and treat. However, appropriate 
clinical management is especially critical for atherosclerotic 
plaques in the carotid artery, as it prevents stroke while 
simultaneously minimizing risks associated with carotid 
endarterectomy (CEA) surgeries. It is estimated that as many as 
13 out of 14 symptomatic patients with 50-69% stenosis and 21 
out of 22 asymptomatic patients with 70-99% stenosis undergo 

CEA unnecessarily [2]. Improved identification of vulnerable 
carotid plaque is critically needed to differentiate patients at low 
risk of embolic stroke from those in crucial need of CEA to 
prevent it. 

The term vulnerable plaque is defined as a plaque with high 
rupture risk and likelihood for generating an ischemic event [2]. 
These plaques vary in location, size, and structure between 
patient to patient. Rather than size or degree of stenosis, their 
relative risk is determined by their structure and composition [3]. 
Recent studies have shown histologically that plaque 
composition is a better biomarker than degree of stenosis for 
assessing vulnerability to rupture [5]. More specifically, 
histopathological post-mortem studies [2-4] have defined the 
hallmarks of vulnerable plaques to include one or more of the 
following components: thin fibrous caps, large lipid-rich 
necrotic cores, increased vasa-vasorum neovascularization, 
inflammation, and presence of intra-plaque hemorrhage. 

Currently, the clinical standard for carotid plaque evaluation 
is duplex ultrasound. However, this technique does not delineate 
plaque structure and composition. As an alternative, Acoustic 
Radiation Force Impulse (ARFI) imaging has been 
demonstrated in animal models and in humans, with validation 
by spatially matched histology [10, 11]. Further, the sensitivity 
and specificity of ARFI imaging for delineating collagen (COL), 
calcium (CAL), lipid rich necrotic core (LRNC), and intraplaque 
hemorrhage (IPH) has been demonstrated for human carotid 
plaque, in vivo [13]. In a statistical reader study with histological 
validation, ARFI-induced peak displacement (PD) was 
evaluated as a metric for tissue stiffness, with high displacing 
regions associated with soft (LRNC and IPH) and low displacing 
regions associated with stiff (COL and CAL) plaque features. 
Although ARFI PD achieved high sensitivity and specificity for 
distinguishing grouped soft (LRNC & IPH) from grouped stiff 
(COL & CAL) components, PD had low sensitivity and 
specificity for discriminating between soft and between stiff 
elements. Alternative ARFI-derived parameters such as 
variance of acceleration (VoA) have been developed to improve 
separation of individual plaque components [16]. More recently, 
we have previously shown in humans in vivo that carotid plaque 
components can be automatically delineated by a support vector 
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machine (SVM) classifier considering normalized cross-
correlation (NCC)-derived measures of ARFI-induced 
displacement [17]. In order to improve ARFI-based 
classification between carotid plaque components, we herein 
evaluate an alternative ARFI displacement tracking method 
based on Blind Source Separation (BSS). We hypothesize that 
SVM classification is improved by using blind source separation 
(BSS)-derived displacements as inputs. We test this hypothesis 
using ARFI data acquired in vivo in 20 carotid plaques from 25 
patients undergoing carotid endarterectomy (CEA) and spatially 
matched histology evaluated by a trained pathologist. 

II. METHODS 

A. Clinical protocol 
Patient data were acquired during a previous clinical study 

as described in [13]. A total of 25 patients undergoing clinically 
indicated CEA were recruited from UNC Hospitals. Inclusion 
criteria included asymptomatic carotid artery disease with >60% 
Doppler-indicated stenosis and unresponsive to medical 
management, or symptomatic carotid artery disease with a 
stenosis suspected to be the source of emboli. All procedures 
were institutional review board (IRB)-approved, and informed 
consent was given from each study participant.  

A total of 20 carotid plaque samples were selected based on 
the following criteria: (1) spatially alignment with histology 
without fractures, and (2) mean ARFI image quality (as assessed 
by blinded readers ≥ 2) [13]. 

B. ARFI imaging 
A Siemens Acuson Antares imaging system (Siemens 

Medical Solutions USA, Inc., Ultrasound Division) equipped for 
research purposes was used for in vivo imaging with a VF7-3 
linear array transducer. ARFI excitation pulses were 300-cycles 
at 4.21 MHz, and tracking pulses were 2-cycles at 6.15 MHz.  

A registered sonographer acquired the imaging data before 
patient sedation, on the same day of surgery. Longitudinal B-
mode and ARFI images of the plaque were acquired, using 
electrocardiogram (ECG) gating to trigger acquisition during 
diastole. Raw RF data were saved for off-line processing using 
MATLAB (Mathworks Inc., Natick, MA). The time interval 
between imaging and specimen extraction was approximately 
four hours. The plaque to be removed by CEA was identified 
from prior ultrasound imaging sessions archived in the patients’ 
medical records and was typically the plaque with the greatest 
stenosis. Before completing the imaging session, the transducer 

was rotated 90°, and transverse B-modes and CINE loops of the 
carotid bifurcation were obtained for alignment with histology. 

C. Blind source separation (BSS) displacement tracking 
 Using radio frequency data, ARFI-induced displacements 
were measured using normalized cross correlation (NCC) with 
a 1.5λ (376-µm) kernel, two-stage interpolation, and linear 
motion filtering [14]. 

 For BSS-based displacement tracking, the acquired radio 
frequency data was Hilbert transformed, then underwent 
principal component decomposition. The Fourier transform of 
the phase was calculated for the nth most energetic principal 
component (where n = 1,2,3,4,5). Next, the phase velocity is 
computed from the frequency spectra, applied through 
translating axial kernels. Principal component analysis assumes 
that the source signals are orthogonal and Gaussian-distributed. 
Both BSS and NCC tracking were performed using a 1.5 λ mm 
kernel. 

D. Plaque component classification 
ARFI displacement profiles were calculated from each of the 
first five principal components of the RF data and used as inputs 
to a support vector machine (SVM) algorithm. Four output 
classes were defined as CAL, COL, LRNC, and IPH. The 
algorithm was trained by inputs corresponding to each 
independent class, previously validated by spatially-matched 
histology delineated by a pathologist. Parameter tuning was 
performed using Bayesian optimization. The classifier was 
evaluated by 5-fold cross-validation with histological gold-
standard. From the output SVM likelihood matrices, ROC 
curves were calculated for separating COL from CAL, and 
LPNC from IPH. ROC results achieved using BSS-derived 
displacement profiles were compared those achieved using 
NCC-derived displacements. 2D class likelihood maps were 
calculated as the compounded likelihood per pixel assigned to 
an RGB value per class: 
 

1. IPH = [255 0 0] 
2. LRNC = [255 255 0] 
3. COL = [0 255 255] 
4. CAL = [0 0 255] 

 
where colors between the above RGB values represent 
combined likelihoods of two classes.  
 

 
Fig. 1. SVM feature-likelihood images for example Type Va Plaque in 53 y/o female with different classification inputs, with matched histology. 
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Fig. 2. Parametric receiver operating characteristic (ROC) curves for 
Eigenvector-based SVM classifiers for identifying collagen (COL) vs. calcium 
(CAL), and necrotic core (LRNC) vs. intraplaque hemorrhage (IPH). 

 

III. RESULTS AND DISCUSSION 
Figure 1 shows SVM feature-likelihood images derived 

from the analyzed eigenvector combinations, and also when 
using the NCC-tracked displacements as input, for a type Va 
plaque with spatially matched histology.  

 

TABLE I.  PERFORMACE FOR EIGENVECTOR-BASED SVM CLASSIFIER 
FOR IDENTIFYING COLLAGEN (COL) VS CALCIUM (CAL), AND NECROTIC CORE 

(LRNC) VS INTRAPLAQUE HEMORRHAGE (IPH). 

Eigenvector inputs 
 for SVM Classifier 

COL vs CAL LRNC vs IPH 
Sensitivity Specificity Sensitivity Specificity 

1 0.826 0.764 0.795 0.760 

1, 2 0.870 0.820 0.839 0.838 

1, 2, 3 0.878 0.814 0.854 0.853 

1, 2, 3, 4 0.970 0.853 0.917 0.828 

1, 2, 3, 4, 5 0.844 0.844 0.886 0.857 

NCC-derived disp. 0.653 0.712 0.659 0.622 

 

Figure 2 shows that, for all examined plaques, using 
displacement profiles derived from the first four eigenvectors as 
SVM inputs increased sensitivity and specificity over using 
NCC-derived displacement profiles. Specifically, Table 1 shows 
that for differentiating COL vs CAL, using the first four 
eigenvector as inputs provided the maximum improvement of 
39.1% and 18% in sensitivity and specificity, respectively, in 
comparison to NCC. Similarly, for differentiating LRNC vs 
IPH, these improved 32.7%, and 28.4% in sensitivity and 
specificity, respectively. 

 

IV. CONCLUSION 
Displacement profiles derived from the first four 

eigenvectors as inputs to the SVM classifier increased 
sensitivity and specificity over using NCC-derived displacement 
profiles. These results suggest that using BSS-derived 
displacement profiles as inputs to the SVM classifier improves 
the discrimination of carotid plaque components that are 
correlated to vulnerability for rupture. 
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