
Measurement and Modeling of Nonlinear Power Law 

Media  

 

Xuan Feng  

College of Geo-Exploration: 

Science and Technology 

Jilin University 

Changchun,China 

fengxuan@jlu.edu.cn  

Thomas Szabo 

Biomedical Engineering 

Boston University 

Boston,USA 

tlszabo@bu.edu 

 

 

Stephen Brown 

Earth Resources Laboratory 

Massachusetts Institute of  

Technology  

Cambridge, USA 

sbrown@mit.edu 

 

Michael Fehler 

Earth Resources Laboratory  

Massachusetts Institute of  

Technology) 

Cambridge, USA 

fehler@mit.edu

 

 

 

 

 

Dan Burns 

Earth Resources Laboratory  

Massachusetts Institute of  

Technology) 

Cambridge, USA 

burns@mit.edu 

 

 

 

 

 

 

Abstract— Traditional measurements of nonlinear and 

viscoelastic materials can be complicated by effects of frequency 

power law absorption and dispersion which affect harmonic 

generation and propagation. New combined measurement and 

modeling approaches are needed that account for both effects. 

The nonlinear interaction of two co-propagating ultrasound 

longitudinal waves are used to characterize induced viscoelastic 

changes occurring in material microstructure. A strong 

longitudinal wave pump affects the viscoelastic properties of the 

sample with dynamically applied strain and a weaker 

longitudinal wave probe senses induced changes.  We developed a 

model which includes both nonlinearity and an estimation of 

viscoelastic characteristics to extract the second and third order 

nonlinear coefficients directly from the time domain data. Two 

samples, Lucite  and  Crab Orchard sandstone, have  comparable 

viscoelastic  properties but vastly different nonlinear  

characteristics. Additional signal processing was needed to 

extract parameters from the Lucite  sample. Measurements for 

the  Crab Orchard sandstone nonlinear coefficients were  =-180, 

and =-0.42*10-9, and for Lucite, they were  =-3.20, and =-

1.05*10-6. Our method can describe and quantify both the 

nonlinear and viscoelastic properties of materials consistently; 

however for materials with lower , improved instrumentation 

and  processing are needed.   

Keywords— hysteresis, nonlinearity, viscoelasticity, strain, 

ultrasound) 

I. INTRODUCTION  

Traditional measurements of nonlinear and viscoelastic 
materials can be complicated by effects of frequency power 
law absorption and dispersion which affect harmonic 
generation and propagation. New combined measurement and 
modeling approaches are needed that account for both effects. 
Our time–domain approach shows that in order to accurately 
determine higher order nonlinear coefficients of highly 
viscoelastic materials such as rocks, frequency power law 

absorption and dispersion must be included. The nonlinear 
interaction of two co-propagating ultrasound longitudinal 
waves are used to characterize induced viscoelastic changes 
occurring in material microstructure as explained in section II.. 
A strong longitudinal wave pump affects the viscoelastic 
properties of the sample with dynamically applied strain and a 
weaker longitudinal wave probe senses induced changes. The 
highly nonlinear [1] elastic response of rocks has been shown 
to be caused by the rock’s microstructure [2]. Methods to 
measure the nonlinear response of a rock may help us to better 
characterize its microstructure and to identify differences 
among rocks. 

Many viscoelastic materials have an absorption 

characteristic  that obeys  a frequency power law[3,4], 

                                 0
y

f  .                                    (1) 

in which 0 is an absorption coefficient in nepers/cm-MHzy. 

Causality requires that a phase velocity dispersion accompany 

the absorption. In this  study we compare two viscoelastic 

nonlinear materials which have comparable viscoelastic 

properties but vastly different nonlinear properties, Lucite and 

Crab Orchard  sandstone. The material transfer functions of 

these two materials are plotted in Fig. 1. The top curves 

display absorption and the bottom curves indicate dispersion 

which is 2f/c(2f) where c is dispersive phase velocity[4]. 

The  Fourier transform of the material transfer function  is 

the material impulse response  function (mirf) which is shown 

for both materials in Fig. 2. This mirf compactly encodes the 

absorption and dispersion information into an equivalent time  

waveform. For our modeling purposes we approximate this 

mirf by a symmetric exponential exp(-|t|) centered at the peak 

of the mirf and fit to the e-1 points of the mirf.  
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In order to study the nonlinear  properties of these  

materials we use a nonlinear version of Hooke’s law as a 

power series expansion [6, 7],  

                         (2) 

where E is elastic modulus and terms β  and δ  are the 

quadratic and cubic nonlinear elastic coefficients, respectively 

up to the third order in strain. The nonlinear elastic modulus  

M is defined as follows: 

                                M=                               (3) 

The normalized change in the elastic modulus with strain 

is 

M/E= (M-E)/E =                      (4) 

However, we found from our experiments on viscoelastic  

materials that an additional term C must be included. 

Therefore, in order to fit the data, previous workers [8-11] 

using resonant steady state setups included a constant C: 

M/E= C +                             (5) 

Because we use broadband time-varying waveforms of an 

arbitrary shape, we have extended this model to freely 

propagating, general time-varying strain () waveforms by 

making the constant C dependent on the loading waveform 

time history as well as the maximum pump strain level. In 

addition, our experiments, which load a slowly time-varying 

strain field into rocks, show that C also empirically describes 

an observed offset of the modulus variation that is due to  

 

 

 

 

nonlinear material conditioning [10-12]. In our model, C is a 

convolution of Eq. 4  and an approximation of a time domain  

viscoelastic response [4], exp (-t|) where  is a viscoelastic  

parameter. If  is a triggered offset delay in our experiments, 

the signal we measure [6] is  

                   2( )C e
 

    
    

 
.                  (6)   

II. METHODS 

A. Experimental Arrangement 

For our present study, we use co-propagating longitudinal 

acoustic waves to load a strain field to measure the nonlinear 

characteristics of rock. As shown in Fig. 3, a low amplitude 

high-frequency (HF) longitudinal wave (the probe) travels 

from transmitter T1 to receiver R1.This signal is then 

compared to the probe signals under the influence of a high-

amplitude low-frequency (LF) longitudinal wave (the pump), 

T2, that loads a temporally varying strain field in the rock. 

Probe signals are used to detect the elastic modulus variation 

induced by the loaded strain. This dynamic strain field offers a 

way to study the evolution of the elastic modulus variation 

between different strain cycles of the pump waveform directly 

in the time domain. 

 

 

 

Our setup depicted   by Fig. 3 includes a pair of 1MHz HF 

(T1 and R1) 25 mm diameter compressional ultrasound 

transducers mounted on opposite sides of a sample (15 x 15 x 

5 cm) to generate and receive 620 kHz probe signals, 

respectively. The pump is a high amplitude compressional 

source that loads a relatively high strain at 74 kHz into the 

sample through a 39 mm 0.1MHz LF (T2) transducer. The 

probe is a low amplitude signal that is used to measure small 

differences in arrival time that are induced by the large strains 

imposed by the pump transducer. As shown in Fig. 3, the 

pump beam (red) overlaps the probe beam (blue). Waves 

generated by the pump and probe propagate at the same 

Figure 1. Material transfer functions for Lucite  and  crab 

orchard sandstone as a function of  frequency 

Figure 2 Material impulse response functions for crab 

orchard sandstone (left) and Lucite (right) as functions of  

time. Also shown are approximations as exp(-|t|) functions 

with =0.13  for crab orchard sandstone and  = 0.23 for 

Lucite with the  +  1/e points 

 

Figure 3. Co-propagating longitudinal wave experimental  setup 

diagram. T1-R1: through transmission low energy high 

frequency probe pair; T2 is a high energy low frequency 

transmitting pump transducer.  R2 is the laser vibrometer 
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velocity. We selected the frequencies to maximize the 

amplitudes of the signals that were coupled into the sample 

while maintaining a large difference in frequencies between 

the pump and probe to facilitate measurements. Each applied 

pump voltage level corresponded to a  maximum strain 

amplitude in the sample. A 3-component laser vibrometer 

(R2) measures the particle vibration velocity, v(t), of the pump 

signal in the overlap region, which is used to estimate the 

strain, ε(t), induced into the sample. We record probe 

waveforms under two conditions at R1. One is the time-of—

flight probe signal recorded when the pump signal is present 

(TOF). The other one is the time of  the probe signal in the 

absence of the pump signal (TOF0). Comparing TOF and 

TOF0, we obtain a measure of the TOF delay, ∆TOF, which is 

used to calculate the elastic modulus variation induced by the 

pump. 

B. Maintaining Elastic Modulus Estimation 

In our experimental setup, the triggers of the probe signal 

were sequentially delayed over a range of 0-43 μs with 1 μs 

increments relative to the pump trigger to allow the probe 

signal to interact with various segments of the positive and 

negative strains induced by the pump signal.  For each probe 

trigger time delay, we measured probe signals with and 

without the presence of the pump signal. A time-of-flight, 

TOF, delay, ∆TOF, between the two types of probe signals 

(with and  without the pump on) depends on the trigger delay 

time. ∆TOF can be measured by a cross-correlation algorithm. 

The elastic modulus variation, ∆M⁄E, is estimated as being 

proportional to the ∆TOF induced by the application of the 

pump divided by the original non-pump TOF0 [13]: 

M/E= -2 TOF/TOF0                         (7) 

where TOF0 is the TOF of the probe in the absence of the 

pump signal (about 52.3μs).  

To obtain the strain as a function of time, the x-axis 

component of the particle velocity measured by the laser 

vibrometer, vx(t),  is used to calculate the estimated strain at 

position (x,y) along the beam axis between the probe 

transducers: 

t) = -vx(t)/vp ,                                       (8)  

where vp is the longitudinal wave velocity in the rock sample 

(about 2870 m/s). For our viscoelastic model we fit Eq. 5 to 

the data given by Eq. 7 [6] by using (t) as an intermediate  

variable to determine the unknown parameters of delay, ,  

and . 

III. RESULTS 

A. Comparison of elastic modulus variation with time-varying 

strain for two materials 

In top half of Fig.4, we present our measurements of strain 
in the Lucite and Crab Orchard  samples according to Eq. 8. 
Despite the comparable strain levels in each material, the 
nonlinear responses are vastly different as given by the curves 
Iin the bottom half of the figure. The  Lucite response is barely 
perceptible on this scale and is buried in noise.   

In order to improve the weak Lucite signals , we examined 
the spectrum of the strain waves. Based on these spectra we 

applied a Gaussian filter from 4 to 15Hz to the data. We used a 
model previously described [6] in the  filtered results for the  
Crab Orchard Sandstone (Fig.5)  at a maximum strain in Lucite 
of   4.88 e -7. This  model based on Eq.’s (5) and (6) is equated 
to the data of Eq. (7) . A minimization method described in [6]  
was used to extract nonlinear and viscoelastic  

parameters,delay, ,  and .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

       

 

     When the same process was applied to the data for Lucite 

in Fig. 5,  the filtering of the noisy data improved the 
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Lucite Experiment

Crab Orchard Experiment

Crab Orchard Modeling

Compression

Tension

Figure 4.  The top figure shows strain and the bottom 

figure indicates the elastic modulus variation, M/E,  

derived from probe signals both as functions of the trigger 

delay time. Black and red lines indicate results for the 

Lucite and Crab Orchard sandstone samples, respectively. 

The dotted blue curve indicates the modeling. 

Figure 5.Top:red- Strain curve with a maximum strain of 

4.88 e -7. Dashed green-strain curve with strain frequency  

filter. Bottom :red- raw data, green-dashed-data  filtered 

strain filter  and blue- viscoelastic nonlinear model based on 

filtered data for the Lucite sample.   
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modeling as can be  seen in Fig. 5. Extracted  parameters for 

both materials are compiled in Table 1.   

B.  Noise Study  

     In order to examine the effect of noise on the determination 

of parameters, random Gaussian noise with an r.m.s amplitude 

equal to the maximum amplitude of the baseline curve was 

added to the model baseline from Fig. 5. Fifty iterations of 

random noise with a signal to noise ratio of one were run to 

obtain a mean and standard deviation for each parameter. 

Results are in Table 2. A typical run is shown in Fig. 6.  

 
Table 2. 

params nmean nstdev nmean nstdev nmean nstdev 

Lucite .5376 .1941 -3.49 .5466 1.2e-6 8.84e-5 

 

 

 

 

 

 

 

IV. DISCUSSSION  

The instrumentation (Fig.3) was designed for  rocks with high 

nonlinear coefficients. In order to understand the effects of 

noise on low amplitude signals, we added  random noise to a 

baseline to study the levels of uncertainty in determining 

parameters. From Table 2, for example, the standard  

deviation  for  is 0.5466 corresponding  to a per cent ratio of 

the standard deviation with noise to the mean value with noise 

of 15.66 %.  Filtering reduced the ratio of the r.m.s error of the 

difference between the model and  data to the model mean for 

M/E from 1.15 to 0.562. What is measured in Fig.5 and Eq. 

7 is time delay and the noise is most likely due to time 

quantization  errors which do not resemble additive  random 

noise. Our value for β are comparable to those reported 

elsewhere [8,15]. The model values for  for Lucite are in the 

same ratio to the linear values for the Crab Orchard Sandstone 

(Fig.2).  The delay parameter t, associated with a short term 

viscoelastic memory effect[6], was 0.9 for the sandstone and 

zero for Lucite. 

V. CONCLUSION  

Our experimental setup works well to characterize 

sedimentary rocks which have both viscoelasticity and large 

nonlinear coefficients due to pore space microstructure such as 

populations of microcracks. However, for weakly nonlinear  

materials such as Lucite, additional filtering was needed  to 

obtain reasonable  values. With improved instrumentation, we 

believe our proposed methodology can characterize a wider 

range of nonlinear, viscoelastic  materials. 
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