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Abstract—Eigen-based clutter filtering of Doppler data has
demonstrated greater clutter rejection performance than tra-
ditional filtering in a number of studies. However, practical
translation of these eigen-based techniques to channel domain
filtering applications is limited by their high computational
burden. To enable efficient eigen-based filtering of channel
data, we propose a domain-adaptive filtering framework. This
technique involves using a basis set generated from RF data
to filter delayed channel data. Preliminary findings suggest that
this technique retains superior clutter rejection performance in
comparison to conventional techniques.

Index Terms—eigenvalue decomposition, singular value decom-
position, power Doppler, clutter filter, channel data

I. INTRODUCTION

Linear signal decomposition is a core component of clutter
rejection. In the context of Doppler imaging, the objective of
linear signal decomposition is to express a signal as a weighted
sum of orthogonal basis functions, whereby blood and clutter
signals may be separated. Clutter rejection is necessary for
reliable visualization of blood flow, as clutter signals bias
measures of velocity and power [1], [2], and can exceed the
magnitude of weak blood echoes by 40-100 dB [3].

The efficacy of clutter rejection filters is predicated on the
choice of basis set used to isolate a signal of interest. Basis sets
are broadly defined via fixed or adaptive methods [4]. Fixed
basis sets are composed of universal approximation functions,
such as wavelets or complex modes of the Fourier series. In
comparison, singular value decomposition (SVD) and eigen-
value decomposition (ED) techniques adaptively define basis
functions using variance characteristics of the data.

Accordingly, traditional FIR and IIR filters which operate
in the Fourier domain are effective when blood and clutter
data reside in separable Fourier subspaces, i.e. exhibit unique
frequency characteristics. However, the assumption of separa-
ble frequency characteristics is often violated; the frequency
response of non-stationary tissue and acoustic clutter often
overlaps low velocity blood echoes [5], [6], and electronic
noise is considered a white noise process. This imposes a filter
design trade-off between non-stationary clutter rejection and
preservation of low velocity blood echoes.

Eigen-based (SVD and ED) filters have emerged as a robust
alternative to traditional filters. Since the bases of eigen-based
filters are defined by characteristics of the specific dataset,
eigen-based filtering is inherently an adaptive technique. As a
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result, numerous studies have demonstrated that eigen-based
filtering techniques may enable more robust rejection of clutter
signal than traditional highpass filters [7].

Despite a substantial amount of literature on design con-
siderations for eigen-based filtering [7], eigen-based filtering
applications have been widely limited to beamformed 1Q or RF
data. Concurrently, several adaptive beamforming techniques
have been developed for Doppler flow applications [8]-[12].
These beamformers rely on clutter rejection operations applied
to channel data [10]-[12] or subaperture data [8], [9], respec-
tively. In these contexts, the increased dimensionality of the
data makes eigen-based filtering exceedingly computationally
expensive.

We aim to reduce this computational burden by using a
domain-adaptive methodology, in which a linear basis set
derived from RF data is used to filter delayed channel data.
This technique enables adaptive, eigen-based filtering schemes
for large channel datasets, while maintaining reasonable com-
putational cost. Preliminary efficacy is demonstrated using
perfusion phantom data.

II. CONVENTIONAL EIGEN-BASED FILTERING

The proposed technique employs the general eigenvalue
decomposition framework of [7], [13], [14] and lower-order
singular value thresholding techniques of [7], [15], which we
will briefly describe herein. An RF dataset is conventionally
represented as a three dimensional matrix, with two dimen-
sions corresponding to axial and lateral space (n, and n,)
and one dimension in time (n:). This data can be reshaped
to combine the lateral and axial spatial extents, forming a
Casorati matrix, Y, with dimensions (n,n, X ng).

Eigenvalue decomposition is performed on the slowtime
covariance matrix of Y, yielding

YTy = v Tyv+T (1)

where V' is the temporal eigenvector matrix and the diagonal
values of X are the eigenvalue coefficients. The symbols (*T)
indicate a conjugate transpose.

Subsequently, the eigen-components are classified using
eigenvalue or eigenvector characteristics. It is assumed that the
first k£ eigen-components form the clutter subspace [7]; hence,
k is defined as the filter cutoff. Here, the cutoff is determined
using two techniques: 1) identifying when the gradient of
eigenvalue energy falls below a predefined level, and 2)
identifying when the mean temporal eigenvector frequency
exceeds a specified value. The larger eigenvalue cutoff is
applied as the cutoff threshold.
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Fig. 1: The eigen-based filter cutoff was determined using (A) eigenvalue and (B) temporal eigenvector characteristics of the

beamformed flow phantom data (C).

Filtering and reconstruction is accomplished by using the
singular value decomposition relation,

Y =uxv*? ()

From this definition, we can relate the data, Y, to the temporal
eigenvector matrix, V, and the projection matrix, X £ YV =
UX. Thus, filtering is performed by replacing the eigen-
components containing clutter with zeros, and reconstructing
the filtered dataset as follows:

V(1:k)=0 3)
X(1:k)=0 4)
Yoiooa = XV (5)

III. DOMAIN-ADAPTIVE FILTERING

Delayed channel data can be represented by a four dimen-
sional matrix, Y cpan, With dimensions (n, X n, X n. X ng)
corresponding to axial space, lateral space, channels, and time.
Several adaptive beamformers operate on the channel data for
each lateral beam [10], [11], so we can alternatively consider
the delayed channel data to be a set of n, submatrices,
Yenan = {Y1,Y2...Y,_}, each of size (n, x n. X ny).

The motivation for a domain-adaptive method is the com-
putational complexity of generating adaptive basis sets. For
a (n7 X no) matrix, the calculation of a covariance matrix
is associated with an O(n1n3) computational burden and an
eigenvalue decomposition is O(n3). As a result, generating 7,
basis sets to filter each channel submatrix is not practical.

A. Basis Generation

To reduce the computational complexity, we propose to
generate the basis set using a reference RF dataset, Yrp,
which is simply the sum of the delayed channel data, i.e.

Ne
Yrr = Yenan 6)
j=1

The RF dataset is reshaped into Casorati form and decomposed
to obtain the basis set V. As described in Section II, a cutoff
value k£ can be determined from an assessment of eigen-
component characteristics.
B. Projection and Clutter Rejection

A given channel submatrix, Y;, where i = [1 : n,], can be
projected onto the RF-defined subspace, as

X; =Y;V @)

The data may be filtered by first setting the first k& eigenvalues
to zero, then reconstructing the filtered data matrix as

V(l:k)=0 ®)
X;(1:k)=0 )
Y piood = Xi VT (10)

Subsequently, the filtered channel data may be passed to an
adaptive beamformer to complete image formation.

IV. METHODS

A polyvinyl-alcohol (PVA) and graphite vessel phantom
was constructed for validation [16]. A single vessel was
formed by placing a 0.6 mm diameter wire through the mold
during construction. Blood mimicking fluid (CIRS Model 046,
Norfolk, VA, USA) was perfused through the vessel at 5 cm/s
(90 pl/min) using a syringe pump.

Nine angled plane wave transmits spanning from -8° to
8°, spaced by 2°, were acquired using a L12-5 probe at
7.8125 MHz on a Verasonics research system (Verasonics Inc.,
Kirkland, WA). During acquisition, the probe was held by a
volunteer sonographer to incur realistic clutter motion profiles.

One second of data was processed to form power Doppler
(PD), CFPD, and ppCFPD images [10], [11]. Plane wave
synthetic focusing and Hann apodization were used during
beamforming, yielding a final PRF of 1000 Hz [17]. Adaptive
demodulation was applied using a kernel size of 10 A and a
lag of 1 frame [18].

Clutter rejection for CFPD and ppCFPD was performed
using the domain-adaptive framework of Section III. The
conventional eigen-based filter presented in Section II was
used for PD processing and to generate the basis model of
Subsection III-A. The eigen-based filter cutoff was determined
using a 20 Hz frequency cutoff and an eigenvalue threshold set
to 25% of the maximum energy, as depicted in Figure 1. The
eigen-based filters were compared to a 6" order Chebyshev
filter with a 20 Hz cutoff.

V. RESULTS AND CONCLUSIONS

Figure 2 depicts preliminary efficacy of the domain-adaptive
filtering technique for adaptive beamforming. Adaptive beam-
formers, such as CFPD and ppCFPD, offer improved sup-
pression of thermal noise and acoustic clutter in comparison
to conventional PD. In comparison to matched PD images,
CFPD and ppCFPD improved contrast up to 4.28 and 6.37
dB, respectively.
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TABLE I: Image Quality Metrics for Phantom Study

IIR Filter Eigen-based Filter
Contrast, dB | CNR | Contrast, dB | CNR
PD 10.47 1.02 13.84 1.14
CFPD 13.42 1.03 18.12 1.14
ppCFPD 12.77 0.98 20.21 1.11

All techniques demonstrated contrast improvements when
an eigen-based clutter was used, in agreement with prior
literature [7]. The conventional eigen-based filter increased PD
image contrast by 3.37 dB, in comparison to the IIR filter.
The domain-adaptive filter increased contrast by 7.44 dB for
ppCFPD and by 4.70 dB for CFPD.

We anticipate that this technique would remain effective
when applied in conjunction with other eigen-based frame-
works, such as blockwise [15], sparse [19], or parallel [20]
implementations. Overall, research of channel domain filtering
remains limited despite substantial advancements in adaptive
filtering techniques. Further investigation of efficient filtering
methods will likely enable greater integration of advanced
beamforming and filtering techniques.
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Fig. 2: Comparison of PD (top row), CFPD (middle row),
ppCPFD (bottom row) images formed using highpass (left)
and eigen-based (right) filtering.
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