
Abstract— Mechanical property assessment by elastographic 

ultrasound methods, including those that exploit acoustic 

radiation force (ARF), relies on accurate estimation of tissue 

displacement. Several displacement estimators have been 

developed, but their relevance to tracking ARF-induced 

displacements smaller than one micrometer is limited by 

estimation variance. To minimize displacement estimation 

variance, a new blind source separation (BSS)-based approach 

that exploits the spatial distribution of displacements is presented.  

This new approach applies principal component analysis (PCA) in 

three-dimensional (3D) kernels to derive dominant eigenvectors, 

from which displacements are estimated. We call this new 

approach the ‘3DK-BSS’ estimator.  The 3DK-BSS estimator is 

evaluated in terms of contrast-to-noise ratio (CNR) achieved in 

ARFI peak displacement (PD) images of a stiff (80 kPa) and a soft 

(8 kPa) spherical inclusion in a commercial phantom with a 25 

kPA background. The CNR values achieved by 3DK-BSS were 

compared to those produced by normalized cross-correlation 

(NCC), Bayesian regularization, and BSS implemented using a 

two-dimensional (2D) kernel at ARF power levels of 5 to 45% of 

the full system power. For all power levels, and for both stiff and 

soft inclusions, 3DK-BSS inclusion CNR was higher than any 

other examined displacement estimator. For example, 3DK-BSS 

stiff inclusion CNR was 16.3, 11.8, and 4.2 times higher than the 

CNRs achieved by NCC, Bayesian regularization, and 2D BSS, 

respectively at 5% power level. CNR improvement by 3DK-BSS 

was largest at the lowest (5%) ARF power level, where 

displacement in the stiff phantom was measured by 3DK-BSS as 

250 nm. These results suggest that, by accurately measuring sub-

micrometer displacements, the 3DK-BSS  displacement estimator 

could enable deeper ARF-based mechanical property assessments, 

finer mechanical resolution in stiff tissues, and/or lower ARF 

power requirements to expand the diagnostic relevance of ARF-

based mechanical property assessments.  
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I. INTRODUCTION 

Over the past three decades, ultrasonic methods for 
interrogating the mechanical properties of tissues have been 

extensively studied and applied for the clinical diagnosis of 
diseases and injuries [1]. Such diagnostic applications have 
considered that the mechanical properties of tissue are related to 
their underlying structure and composition. Thus, alterations in 
structure and composition caused by disease or injury are 
detectable by evaluating tissue mechanical properties.  

Among the various ultrasound approaches to interrogating 
tissue mechanical properties are those that exploit acoustic 
radiation force (ARF) [2]–[5]. An essential component to ARF-
based mechanical property assessment is an accurate estimation 
of ARF-induced deformation, i.e., displacement, which is on the 
scale of micrometers. To estimate displacement from ultrasound 
data, several methods have been developed, including  Kasai and 
Loupas motion estimators [6], which operate in the phase 
domain, and normalized cross-correlation (NCC), which 
operates in the time domain [6]. While these displacement 
estimators are generally well suited for measuring displacements 
of several micrometers, measurement variance can be as high as 
one micrometer or greater [7]. This degree of displacement 
variance limits interrogations of mechanical property in deep 
and/or very stiff tissue, where ARF-induced displacements may 
be less than one micrometer and set a lower bound on system 
power requirements.  

Various methods for improving displacement estimation 
accuracy have been developed. For example, a Bayesian 
regularization approach that exploits information about the 
spatial distribution of displacement estimates has been 
demonstrated to achieve lower mean-square error for bulk 
displacement in strain-based elastography [8]. Also, a blind 
source separation (BSS)-based approach exploiting principal 
component analysis (PCA) was demonstrated to measure ARFI-
induced displacement with lower variance than NCC [9].  Also 
using a PCA method, Hossain et al. detected nanometer-scale 
motion of super-paramagnetic iron oxide particles in 
magnetomotive ultrasound imaging [10] with prior knowledge 
of the frequency and phase of magnetic oscillations [11], [12]. 
These previous implementations of BSS-based displacement 
tracking brought estimation variance below that predicted by the 
Cramer-Roa lower bound [7], but further improvements might 
be achievable by exploiting two-dimensional (2D) spatial 
information.  
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 The objective of this work is to incorporate 2D spatial 
information in BSS-based displacement tracking by performing 
PCA decompositions in three-dimensional (3D) (axial x lateral 
x time) kernels. This new approach, 3DK-BSS, is compared to 
NCC, Bayesian regularization, and  BSS displacement 
estimation using a 2D (axial x time) kernel in terms of contrast-
to-noise ratio (CNR) for delineating spherical inclusions in a 
commercially available elasticity phantom with low ARF power 
settings. 

II. METHODS 

A. Phantom experiments 

A calibrated cylindrical inclusion phantom (CIRS, Model 
049A) was evaluated. The background Young’s modulus was 
25 kPa, and inclusions had Young’s moduli of 80 kPa (stiff) or 
8 kPa (soft). The inclusions were imaged in an elevation plain 
that achieved an inclusion cross-sectional diameter of 4.05 mm.  

B. ARFI data acquisition and processing 

ARFI imaging was performed using a Siemens S3000 Helix 
and a 9L4 transducer (Siemens Healthineers, Ultrasound 
Division, Issaquah, WA, USA) using the methods described in 
[13]. The employed ARFI beam sequence parameters are listed 
in Table 1. ARFI excitation pulse powers were varied from 5% 
to 45% of the full system power to induce different amounts of 
displacement. Acquired ARFI data sets were three-dimensional 
(axial x lateral x time). 

C. Displacement estimation 

 ARF-induced displacement was estimated using NCC (1D 
axial kernel = 0.5 mm) [6], Bayesian regularization (1D axial 
kernel = 0.3 mm) [14], 2D BSS (1D axial kernel = 1.2 mm), and 
3DK-BSS (axial kernel = 1.2 mm and lat kernel = 2.0 mm).    
The acquired raw RF data were made complex to enable 
separation of signal components based on the direction of 
motion, which was encoded in the phase component. For each 
(axial x lateral) pixel in the ARFI data volume, PCA was 
performed in a two-dimensional (axial x time) or a three-
dimensional (axial x lateral x time) kernel surrounding the pixel. 
If the kernel was three-dimensional, the data was reformed into 
a 2D (axial*lateral x time) Casorati matrix [15]. Then, complex 
PCA was performed on the auto-correlation of the kernel data 
matrix. From the complex PCA decomposition, the principal 
(most energetic) eigenvector was identified. The phase of the 
most energetic eigenvector (v1), sound speed (c, assumed to be 
1540 ms-1), and sampling frequency (fs), were used to estimate 
the displacement (dx) as [9]: 

𝑑𝑥 =
𝑐

2𝑓𝑠
 

tan−1(
𝐼𝑚 (𝑣1)
𝑅𝑒(𝑣1)

)

tan−1 {
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𝑗=0
𝑀−2
𝑖=0 ]
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Where  K is 2D kernel data with size MxN. 

D. Image Quality Metrics 

 Displacement estimator performance was compared in terms 
of inclusion contrast-to-noise ratio (CNR), using the equation, 

𝐶𝑁𝑅 =
|𝜇𝑖𝑛𝑐 − 𝜇𝑏𝑘𝑑|

√𝜎𝑖𝑛𝑐
2 + 𝜎𝑏𝑘𝑑

2
 

where, μ and σ represent the median and standard deviation of 
displacement in the inclusion (inc) and background (bkd) 
regions of interest (ROI). The inclusion ROIs were circles 
centered on the inclusions and with a radius of 80% of the 
corresponding inclusions’ radius. Background ROIs were rings 
surrounding the corresponding inclusions, with an inner radius 
of 120% and size same as inclusion’s ROI. 

III. RESULTS AND DISCUSSION 

Figure 1 (a and b) shows ARFI peak displacement (PD) in 
the 80 kPa inclusion and the 25 kPa background as estimated by 
NCC, Bayesian regularization, 2D BSS, and 3DK-BSS. The 
lowest detected displacement in the 80 kPa inclusion, which 
occurred with the ARF power set to 5%, was 250 nm. Panel (c 
and d) shows the coefficient of variation ( COV = 100*standard 
deviation/mean) of PD in 80 kPa inclusion and the 25 kPa 
background for NCC, Bayesian regularization, 2D BSS, and 
3DK-BSS. The coefficient of variation was lowest for 3DK 
BSS. 

The impact of lower COV on ARFI imaging performance is 
apparent in the peak displacement images shown in Figure 2 (a). 
Visually, the stiff inclusion is more readily discerned by the two 
BSS displacement estimators than by the NCC or Bayesian 
regularization estimators. The further quantitative evaluation 
shows that inclusion CNR was 16.3, 11.8, and 4.2 times higher 
with the 3DK-BSS estimator than with NCC, Bayesian 
regularization, and 2D BSS estimators, respectively. 

Figure 2(b-c) quantitatively compare inclusion CNR 
achieved using NCC, Bayesian regularization, 2D BSS, and 
3DK-BSS displacement estimators for different ARF power 
levels in stiff (b) and soft (c) inclusions.  Across all examined 
power levels, and for both stiff and soft inclusions, the 3DK-
BSS displacement estimator yielded higher CNR than any of the  

Table 1 : ARFI beam squence parameters.  

Name Value 

Transducer 9L4 

Bandwidth 55.38% 

Sampling freq. 40 MHz 

Acoustic lens focus (axial, lateral, 

elevation) 
(40, 0, 0) mm 

 ARF excitation duration  300 cycle 

ARF excitation center frequency 4.0 MHz 

ARF excitation F/# 1.5 

ARF axial focus  34 mm 

Tracking center frequency 6.0 MHz 

Tracking transmit F/# 1.5 

Tracking receive F/#* 0.75 

Tracking transmit axial focus  34 mm 

Tracking PRF 10 Hz 

Tracking ensemble length   5 ms 

*Aperture growth and dynamic Rx focusing enabled 
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Figure 1: ARFI peak displacement values of the inclusion (a), and background (b) of a calibrated phantom (CIRS 049A), for different 
ARF power levels. Values are calculated using NCC, Bayesian regularization, 2D BSS, and 3DK-BSS. Data are plotted as mean ± 
standard deviation of displacement in the ROI. The coefficient of variation ( COV = 100*standard deviation/mean) of PD in 
inclusion (c) and in background (d) for NCC, Bayesian regularization, 2D BSS, and 3DK-BSS. 

 

Figure 2: (a) Representative B-Mode and normalized peak displacement images by NCC, Bayesian regularization, 2D BSS, and 

3DK-BSS estimators. The black indicates the true inclusion boundary, the red contour represents the inclusion ROI, and the space 

between the black and the yellow contours represents the background ROI for CNR calculation. Green and Yellow color in the 

normalized PD images represent lower (i.e., stiff) and higher (i.e., soft) displacement. (b) CNR derived using NCC, Bayesian 

regularization, 2D BSS, and 3DK-BSS displacement estimators in the (b) stiff and (c) soft inclusion as a function of ARF power 

level, expressed as a percentage of full system power.  
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other evaluated displacement estimators, with the biggest gain, 
achieved at the lowest (5%) ARF power level in the stiff 
inclusion. 

IV. CONCLUSION 

In this work, the 3DK-BSS displacement estimator was 
presented in the context of displacement tracking for ARFI 
imaging. The performance of the 3DK-BSS estimator was 
compared against that of the NCC, Bayesian regularization, and 
2D BSS methods in terms of contrasting stiff and soft phantom 
inclusions using low ARF power levels. Inclusion CNR 
achieved by the 3DK-BSS displacement estimator was higher 
than that achieved using any other examined displacement 
estimator, especially for the smallest displacements. These 
results suggest that the 3DK-BSS displacement estimator could 
enable deeper applications of ARF-based mechanical property 
calculations, finer mechanical resolution in stiff tissues, and/or 
lower ARF power requirements to expand the overall diagnostic 
relevance of ARF mechanical property assessments.  
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