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Abstract — Cardiac ultrasound imaging suffers from acoustic 

artefacts including diffraction limitation, aberration, 

reverberation, multipath, and electronic noise. In particular, 

multipath through the chest wall gives rise to a diffuse haze that 

obscures clinically relevant features.  

Linear prediction filtering applied to time-aligned array 

channel data has recently been introduced for white noise 

reduction in ultrasound. Our objectives in this work are 1) 

theoretical: to summarize the insights underpinning linear 

prediction filtering of array data thereby providing a 

mathematical framework to analyze its effects; and 2) 

experimental: to test the effectiveness of this technique in reducing 

multipath noise that produces diffuse cardiac haze.  

A signal model of array data originating from a superposition 

of far-field point sources can be expressed with a fully 

deterministic recursion and interpreted as a linear prediction 

model. The linear prediction filter is the minimum mean square 

error estimator of the predictable signal components. Linear 

prediction filtering is equivalent to applying a spatial filter to the 

channel data prior to beam-sum. The filter, combined to beam-

summing, is equivalent to a applying a post-filter (i.e. mask) to the 

beam-summed data, whose amplitude is the DC response of the 

filter.  

Linear prediction filtering was applied on in-vivo cardiac 

datasets and compared to applying a Wiener postfilter designed to 

minimize the mean squared error of the beamformed output in the 

presence of white noise. Compared to Wiener filtering, the linear 

prediction filter was effective at reducing chamber haze levels, but 

it preserved sidelobe signals. The linear prediction framework 

may reduce scattering from structures of interest if the signal to 

interference ratio is low.  

Keywords— Beamforming, Linear prediction filtering, noise 

reduction, multipath 

I. INTRODUCTION  

In cardiac imaging, multipath / multiple scattering from the 
chest wall and structures adjacent to the heart give rise to a haze 
that obscures the tissue and impedes diagnosis [1].  

Linear prediction filtering is a commonly used technique for 
noise reduction [2]. The technique was recently introduced on 
ultrasound data where it was shown effective at eliminating 
white noise and its potential for eliminating multipath noise was 

expressed [3]. Linear prediction filtering assumes a signal model 
where the signal received at the array is the superposition of a 
finite sum of coherent wavefronts. Under such signal model, the 
signal of any array element can be predicted by the signal sensed 
at a finite number of neighboring array elements. The 
component that is not predicted corresponds to the residual 
noise, i.e. all that cannot be described by the signal model, 
including white noise and spatially broad-band multipath noise 
[3,4]. 

Applying linear prediction filtering to the array data prior to 
summing will therefore eliminate unpredictable signal 
components from the input data but will retain coherent on-axis 
and off-axis scattering events. Broadband white noise and 
multipath noise are largely eliminated, but sidelobe noise is 
preserved.  

In the following we present the theory of linear prediction 
filtering applied to filtering broadband noise from per-channel 
data. We show that filtering and beamsummation is equivalent 
to applying a post-filter (mask) to the image, and compare this 
mask’s properties to the Wiener post-filter [5], which was 
introduced to minimize noise in ultrasound images under pure 
white noise assumption. Finally, we test the effectiveness of the 
technique for removing cardiac haze in vivo.  

II. THEORY 

A. Signal model and recursion formula 

The signal arriving at a 1D array, after time-delay 
compensation, is modeled as a discrete sum of a finite number 
of coherent scatterers. In the narrowband approximation, it 
writes:  

𝑠(𝑛) = ∑ 𝛽𝑖𝑒
𝑗𝑘𝑖𝑛𝑝

𝑖=1     (1) 

where p is the assumed number of scatterers and will also be 
referred to as model order, the 𝛽𝑖 ’s are complex amplitudes 
(amplitude and phase) of the scattering events, the 𝑘𝑖 ’s are 
spatial wavenumbers linked to the direction of arrival of the 
signal (𝑘𝑖 = 2𝜋 ∙ 𝑝𝑖𝑡𝑐ℎ/𝜆 ∙ sin⁡(𝜃𝑖) where 𝜆 is the wavelength 
and 𝜃𝑖 the angular direction of arrival), and 𝑛 indexes the array 

elements. 𝑗 = √−1. 

We will demonstrate that the signal can be modelled by a 
deterministic recursion, i.e. that the signal at channel n can be 
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predicted by signals at p previous channels n-1 to n-p. The 
following is derived from [6]. 

Taking the Fourier transform along the array dimension (𝑛): 

𝑆(𝑘) = ∑ 𝛽𝑖𝛿(𝑘 − 𝑘𝑖)
𝑝
𝑖=1   (2) 

where 𝛿(∙) is the Kroenecker Delta function. 

 We can uniformly cancel 𝑆(𝑘)  by multiplying it by a 
function that has zeroes at the 𝑘𝑖 ’s, for example 𝑃(𝑘) =
∏ (1 − 𝑒𝑗(𝑘−𝑘𝑖))
𝑝
𝑖=1 : 

𝑃(𝑘)𝑆(𝑘) = ∏ (1 − 𝑒𝑗(𝑘−𝑘𝑖))
𝑝
𝑖=1 𝑆(𝑘) = 0 (3) 

 𝑃(𝑘) is a polynomial of degree p in 𝑒𝑗𝑘 . Let us write its 
expanded form as  

𝑃(𝑘) = 1 − ∑ 𝑎𝑖𝑒
𝑗𝑖𝑘𝑝

𝑖=1   (4) 

where the 𝑎𝑖’s result from the expansion and depend on the 𝑘𝑖’s.   

 Replacing the expanded for of 𝑃(𝑘) in (3) we have 

(∑ 𝑎𝑖𝑒
𝑗𝑖𝑘𝑝

𝑖=1 )𝑆(𝑘) = 𝑆(𝑘)  (5) 

and, taking the inverse Fourier transform:  

(∑ 𝑎𝑖𝛿(𝑛 − 𝑖)
𝑝
𝑖=1 ) ∗ ⁡𝑠(𝑛) = 𝑠(𝑛)  (6) 

where * is the convolution operator. Because 𝛿(𝑛 − 𝑖) ∗ 𝑠(𝑛) =
𝑠(𝑛 − 𝑖) it comes 

𝑠(𝑛) = ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1   (7) 

which is the recursion formula we were looking for and states 
that the signal at channel 𝑛  can be predicted as a linear 
combination of its neighbors.  

B. Estimating the parameters of the recursion 

In practice, measurements are noisy, and we assume that the 
(noisy) channel 𝑠(𝑛)  can only be predicted from its (noisy) 
neighbors up to a random error term 𝑒(𝑛), i.e. 

  𝑠(𝑛) = ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1 + 𝑒(𝑛) (8) 

We can use a least squares minimization approach to 
estimate the 𝑎𝑖’s given a model order. The 𝑎𝑖’s are the ones that 
minimize the prediction mean squared error, i.e.  

{𝑎𝑖}𝑖=1…𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛⁡E(|𝑒(𝑛)|2) 

= 𝑎𝑟𝑔𝑚𝑖𝑛⁡E (|𝑠(𝑛) − ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1 |

2
)   (9) 

where E(∙)  denotes expected value. We can estimate the 
expected value by averaging over array index (n), i.e.  

{𝑎𝑖} = 𝑎𝑟𝑔𝑚𝑖𝑛⁡ ∑ |𝑠(𝑛) − ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1 |

2𝑁
𝑛=𝑝+1     (10) 

This is the same as finding the minimum mean-squared error 
solution of the matrix equation 

𝐒 = 𝚺 ∙ 𝐀   (11) 

With 𝐒 = [𝑠(𝑝 + 1)⁡𝑠(𝑝 + 2)… 𝑠(𝑁)]𝑇,   

 𝐀 = [𝑎1⁡𝑎2…⁡𝑎𝑝]
𝑇
, and  

𝚺 = [

𝑠(𝑝) 𝑠(𝑝 − 1) … 𝑠(1)

𝑠(𝑝 + 1) 𝑠(𝑝) … 𝑠(2)
… … … …

𝑠(𝑁 − 1) 𝑠(𝑁 − 2) … 𝑠(𝑁 − 𝑝)

] 

The least square error solution is  

𝐀 = (𝚺𝐻𝚺)−𝟏𝚺𝐻𝐒   (12) 

Once the 𝑎𝑖’s are found through equation (11), they are used 
to predict each channel data from its neighbors according to  

𝑠̂(𝑛) = ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1   (13) 

𝑠̂(𝑛) is the linearly predicted channel data for element n, it 
is the estimate that minimizes the mean squared error between 
the predictable part of the signal according to the model, and the 
measured signal.   

C. Some remarks 

 Forward-backward averaging:  

Note that in the above, channel n is predicted from its 

preceding neighbors (channels n-1 to n-p). We can also flip 

the array and predict channel n from its neighbors on the 

other side (channels n+1 to n+p); the final filtered signal is 

the average of the predicted signals in both directions, this 

is what is done in [3]. An alternative would be to predict 

channel n’s signal from its neighbors on both sides. 

Analogous to eq. (7), we have 

𝑠(𝑛) = ∑ 𝑎𝑖𝑠(𝑛 + 𝑖)
𝑝/2

𝑖=−
𝑝

2
,𝑖≠0

  (14) 

the derivation of the 𝑎𝑖’s would proceed similarly as above.  

 Prediction filtering of per channel data and masking / 

post-filtering 

Once the predicted data 𝑠̂(𝑛)  is obtained, it is summed 

across the array to obtain the beamsummed data: 

𝑦̂ = ∑ 𝑠̂(𝑛)𝑁
𝑛=𝑝+1 = ∑ ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)

𝑝
𝑖=1

𝑁
𝑛=𝑝+1   (15) 

(we just inserted eq. (13) in the beamsum). Reverting the 

sums, it becomes 

𝑦̂ = ∑ 𝑎𝑖 ∑ 𝑠(𝑛 − 𝑖)𝑁
𝑛=𝑝+1

𝑝
𝑖=1   (16) 

If the model order is small compared to the total number of 

elements (p<<N), then ∑ 𝑠(𝑛 − 𝑖)𝑁
𝑛=𝑝+1 ≈ ∑ 𝑠(𝑛) = 𝑦𝑁

𝑛=1  

(the beamsum of noisy data), as the difference is only in the 
contribution of a few edge elements. Therefore (16) 
simplifies:  

𝑦̂ ≈ 𝑦 ∙ ∑ 𝑎𝑖
𝑝
𝑖=1    (17) 

In other words, even though linear prediction filtering is 
understood and applied on the per-channel data, is can be 
applied equivalently as a complex post-filter (i.e. a mask) to 
the complex beam-summed data. The value of the mask, 

∑ 𝑎𝑖
𝑝
𝑖=1 , is the D.C. response of the linear prediction filter. In 

other words, we are trading off some distortion to “desired 
signals” on-axis for white noise reduction since a 
distortionless response constraint would correspond to 

∑ 𝑎𝑖
𝑝
𝑖=1 = 1. 

 Spectral estimation 

Starting from equation (8) that states that the residual 

between the true signal and its predicted value is a random 

noise term 𝑒(𝑛), i.e.  
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𝑠(𝑛) = ∑ 𝑎𝑖𝑠(𝑛 − 𝑖)
𝑝
𝑖=1 + 𝑒(𝑛)  (8) 

we can take the Fourier transform of the above and obtain 

𝑆(𝑘) ∙ (1 − ∑ 𝑎𝑖𝑒
𝑗𝑖𝑘𝑝

𝑖=1 ) = 𝐸(𝑘) (18) 

from which we deduce the power spectral estimate of the 

signal model:  

𝐸(|𝑆(𝑘)|2) = 𝜎𝑒
2/(1 − ∑ 𝑎𝑖𝑒

𝑗𝑖𝑘𝑝
𝑖=1 ) (19) 

and we see that the spatial frequencies / directions of arrival 

present in the signal model, i.e. the peaks of 𝐸(|𝑆(𝑘)|2), 

correspond to the zeroes of the polynomial (1 −

∑ 𝑎𝑖𝑒
𝑗𝑖𝑘𝑝

𝑖=1 ) . Once these peaks {𝑘𝑖}𝑖=1…𝑝  are found, the 

complex amplitudes {𝛽𝑖}𝑖=1…𝑝⁡of the scatterers in the signal 

model of eq. (1) can be found by finding the 𝛽𝑖 ’s that 

minimize the error between the signal model and the 

measured signal, e.g.  

{𝛽𝑖}𝑖=1…𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛⁡E (|𝑠(𝑛) − ∑ 𝛽𝑖𝑒
𝑗𝑘𝑖𝑛𝑝

𝑖=1 |
2
) (20) 

The procedure described above is a known parametric 
spectral estimation technique called autoregressive 
modelling (AR) that applies to a signal comprised of peaks 
in random noise [6]. Once the signal model is known 
explicitly, it could be used to produce an image, estimate the 
noise, or both. This will be the object of further investigation; 
here we restrict ourselves to linear prediction filtering and its 
equivalent masking of equations (13), (15) and (17). 

III. METHODS 

We first apply linear prediction filtering on a phantom 
dataset consisting of point scatterers. In this configuration, the 
signal model is valid, and the signal is completely preserved 
including the sidelobes (as long as the number of scatterers 
contributing to the per-channel data at any given location does 
not exceed the model order p). This is unlike other masking 
techniques such as the Wiener post-filter that attenuate 
sidelobes. Then, we apply the technique to in vivo cardiac 
datasets in parasternal long-axis and apical 4-chamber views.  

We used a Philips S5-1 sector probe in fundamental mode. 
We filter the per-channel data around the band of interest with a 
quadrature band-pass filter. Then we apply the processing 
described in the previous section at each depth on the complex 
data, with a model order p = 4. Results are compared to applying 
the Wiener post-filter [5], which is a multiplicative mask 𝑊 
applied to the beam-summed data 𝑦 = ∑ 𝑠(𝑛)𝑁

𝑛=1 . The Wiener 
mask is a more theoretically explicit trade off between signal 
and noise attenuation as it is designed to minimize the mean-
squared error between the true (noiseless) beam-summed signal 
𝑥 and the weighted noisy beam-summed signal 𝑦 as  

𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛⁡𝐸(|𝑥 −𝑊 ∙ 𝑦|2)   (21) 

 Under the assumption that true signal and noise are 
decorrelated, the solution to (21) is  

 𝑊 = 𝐸(|𝑥|2) (𝐸(|𝑥|2) + 𝐸(|𝑦 − 𝑥|2))⁄   (22) 

 In this paper we follow the approximations in [5] which 
define 𝑊 from the measured per-channel data as 

𝑊 = |𝑦|2 (|𝑦|2 + 𝜎2)⁄    (23) 

where 𝜎2  is an estimate of the beamformed noise power 
assuming white channel noise:  

𝜎2 = ∑ |𝑠(𝑛) − 𝑦/𝑁|2𝑁
𝑛=1   (24)  

IV. RESULTS 

All results are presented on the following page (1: point 
scatterer simulation; 2: apical 4-chamber view, 3: parasternal 
long-axis view), showing: top row, from left to right: the default 
Delay-and-Sum image | with linear prediction filtering of per 
channel data | with Wiener post-filtering; Bottom row, from left 
to right: the equivalent post-filter for linear prediction filtering | 
the Wiener post-filter. Images are shown with equal gain and a 
70dB dynamic range, masks are shown on a [0 1] scale.  

Upon quantitative analysis, linear prediction filtering of 
cardiac data significantly improved endocardium-to-chamber 
contrast (e.g. from 17 to 24 dB in the apical 4-chamber view) 
but the contrast-to-noise ratio was unchanged. 

Compared to Wiener filtering, the linear prediction filter was 
effective at reducing chamber haze levels but preserved sidelobe 
artefacts, as expected. 

V. DISCUSSION 

 Although the results are encouraging with reduced cardiac 
haze and preserved endocardium, the evidence is insufficient to 
conclude on clinical usefulness. Further validation work should 
include implementation on harmonic imaging, which is the 
default mode in clinical echocardiography, and testing on more 
datasets in a varied patient population and a variety of views.  

 Further design work should focus on a better implementation 
matching the theory with clinical reality. For example, here we 
compute the linear prediction coefficients from complex 
broadband data from the entire array, but 1) the theory is 
narrowband, and 2) in general, signals will not be stationary 
across the array, due to both the broadband nature of the signal 
and the heterogeneity of the acoustic window (i.e. partial array 
blockage) and the propagation path. Note that a broadband 
implementation was provided in [3]. 

 Finally, linear prediction filtering does not guarantee to 
preserve the on-axis signal if the signal to noise ratio is low: if 
the signal of interest is not one of the p strongest components in 
the per-channel data, the algorithm will reject it. A successful 
algorithm will need a safeguard against this situation.  
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