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Abstract—Exact and approximate analytical time-domain
Green’s functions that describe linear with frequency attenuation
are presented for the Chen-Holm space-fractional wave equation.
These exact and approximate time-domain Green’s functions
contain a Cauchy density multiplied by a Heaviside function,
where the Heaviside function guarantees that the response is
causal. To demonstrate the distinguishing features of these ana-
lytical expressions, exact and approximate time-domain Green’s
functions are numerically evaluated and compared for linear
with frequency attenuation. Numerical results are evaluated for
an attenuation of 0.5 dB/cm/MHz, and the results demonstrate
excellent agreement between the exact and approximate solutions.
At this and at all other distances, the exact and approximate
solutions overlap almost perfectly. Comparisons of the peak
values evaluated and the full width at half maximum (FWHM)
evaluated as a function of time at different distances for the
exact and approximate expressions also agree very closely. Thus,
the approximate expressions are excellent approximations to the
exact time-domain Green’s functions for the Chen-Holm space-
fractional wave equation, which is the only known fractional
wave equation that yields causal analytical time-domain Green’s
functions describing linear with frequency attenuation.

I. INTRODUCTION

Several fractional wave equations describe power law at-
tenuation for medical ultrasound, including the Szabo [7],
Caputo [2], power law [6], Chen-Holm [3], and Treeby-Cox
[8] wave equations. For the power law exponent y = 1,
which is an important value in medical ultrasound, all of these
fractional wave equations break down except for the Chen-
Holm space-fractional wave equation. The Chen-Holm wave
equation also admits exact analytical time-domain Green’s
functions for y = 1, where the resulting expressions are
advantageous for subsequent analytical manipulations and
numerical evaluations. This motivates further examination of
the Chen-Holm space-fractional wave equation for the special
case y = 1. Exact and approximate Green’s functions are
derived for the Chen-Holm space-fractional wave equation
when y = 1. These are represented by Cauchy densities
multiplied by a Heaviside function, which guarantees that the
response is causal. To demonstrate the effect of attenuation
in the time-domain, these exact and approximate time-domain
Green’s functions are computed and displayed for different
distances. The results demonstrate decay and and waveform
spreading as a function of distance, which suggests that these

analytical time-domain Green’s functions will provide valuable
insight when applied to numerical and analytical models of
medical ultrasound.

II. EXACT AND APPROXIMATE TIME-DOMAIN GREEN’S
FUNCTIONS FOR THE CHEN-HOLM SPACE-FRACTIONAL

WAVE EQUATION

For the special case y = 1, a space-fractional model for
the power law attenuation experienced by medical ultrasound
propagating in soft tissue is given by [3]

∇2g − 1

c20

∂2

∂t2
g − τ ∂

∂t

(
−∇2

)1/2
g = 0. (1)

In Eq. 1, c0 is the speed of sound constant, t is the time,
τ = 2α0 is the fractional relaxation time when y = 1, α0

is the attenuation constant,
(
−∇2

)1/2
Eq. 1 is the fractional

Laplacian operator for the power law exponent y = 1, and
g(r, t) is a solution to the Chen-Holm space-fractional wave
equation, where r represents the distance from the origin. To
obtain the attenuation and the phase velocity, Eq. 1 is Fourier
transformed in space and in time, which yields

k2 + jωτk − ω2

c2
= 0 (2)

for the dispersion relation. The root of Eq. 2 with the positive
real part is given by

k = −jωτ
2

+ ω

√
1

c20
− τ2

4
, (3)

where the real and imaginary parts both depend on the angular
frequency. Letting τ = 2α0 and taking the negative of the real
part of Eq. 3 provides the exact expression for the attenuation
as a function of frequency α (ω) described by the Chen-Holm
wave equation when y = 1, which is

α (ω) = α0ω, (4)

The phase velocity c (ω) for Chen-Holm when y = 1 is
obtained from Eq. 3 after dividing by the angular frequency
ω, substituting τ = 2α0, and then taking the reciprocal of the
result, which yields

c (ω) =
c0√

1− α2
0c

2
0

. (5)
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The expression in Eq. 5 is well-approximated by Eq. 10 from
[10] after substituting τ = 2α0 and letting y = 1, which is

1/c (ω) ≈ 1/c0 − 1/2α2
0c0. (6)

To obtain exact and approximate time-domain Green’s func-
tions for the Chen-Holm wave equation, a impulsive input in
time and space is applied to Eq. 1,

∇2g − 1

c20

∂2

∂t2
g − τ ∂

∂t

(
−∇2

)1/2
g = −δ(t)δ (R) , (7)

and then Eq. 7 is Laplace transformed in time and Fourier
transformed in space, which gives

k2∇2Ĝ+
s2

c20

∂2

∂t2
Ĝ+ τskĜ = 1. (8)

In Eq. 8, Ĝ (k, s) describes the Laplace and Fourier transform
of the Green’s function solution g (r, t), where upper case
indicates the Laplace transform and the hat indicates the
Fourier transform. Solving for Ĝ (k, s), multiplying by c20/c

2
0,

and reorganizing yields

Ĝ (k, s) =
c20

(s+ τkc20/2)
2
+ k2c20 − (τkc20/2)

2 . (9)

The inverse Laplace transform in time is then evaluated with
L{e−at sin (ωt)} = ω/

[
(s+ a)

2
+ ω2

]
to obtain
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c0H (t) e−τkc
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Next, Eq. 10 is inserted into the spherically symmetric inverse
three-dimensional (3D) Fourier transform [1],

g(r, t) =
4π

(2π)
3
r

∫ ∞
0

ĝ(k, t) sin (kr) k dk, (11)

and then the resulting expression is rewritten with the product
formula sinA sinB = 1

2 [cos (A−B)− cos (A+B)] and
evaluated using

∫∞
0

e−ax cos (bx) dx = a/
(
a2 + b2

)
with

τ = 2α0. The exact time-domain Green’s function for the
Chen-Holm space-fractional wave equation with y = 1 is then
given by
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The expression on the right hand side of Eq. 12a describes
an outbound linear with frequency attenuated spherical wave,
and the expression in Eq. 12b describes an inbound linear with
frequency attenuated spherical wave. The term in Eq. 12b is
negligible, which yields the approximate expression
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(13)

for the time-domain Green’s function of the Chen-Holm space
fractional wave equation when y = 1. The expressions in
Eqs. 12 and 13 are both causal due to the Heaviside function
H(t).

III. METHODS

The exact and approximate time-domain Green’s functions
are computed and plotted in Matlab. The computed Green’s
functions are each scaled by 4πr to emphasize the properties
of the Cauchy density that describe linear with frequency
attenuation. The scaled Green’s functions are evaluated at
α0 = 0.5 dB/cm/MHz. For numerical calculations, the units
required for α0 are Np/m/(rad/sec), which requires division by
20 log10 e, multiplication by 100, division by 2π×106, for the
conversions to Np, cm, and rad/sec, respectively.

IV. RESULTS

The exact and approximate time-domain Green’s functions
for the Chen-Holm wave equation with y = 1 are computed
with Eqs. 12 and 13, respectively, at distances of r = 1, 2,
3, 4, and 5 cm. The time-domain Green’s functions in each
figure are normalized to the peak value at r = 1 cm. Figs. 1-5
demonstrate that the peak decays rapidly as the time-domain
Green’s function propagates from 1 to 5 cm. Similarly, the
temporal width increases as the propagation distance increases.
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Fig. 1. Exact and approximate time-domain Green’s functions for the Chen-
Holm wave equation with y = 1 evaluated at r = 1 cm.

V. CONCLUSION

As demonstrated in Section II, the Chen-Holm space frac-
tional wave equation exactly describes linear with frequency
attenuation when y = 1. The Chen-Holm space-fractional
wave equation is also dispersionless in the sense that the
phase velocity is equal to a constant value when the power
law exponent y is equal to 1. Exact and approximate Green’s
functions are also derived for the Chen-Holm wave equation
when y = 1. These are evaluated and compared in Figs. 1-5,
which demonstrate that the exact and approximate expressions
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Fig. 2. Exact and approximate time-domain Green’s functions for the Chen-
Holm wave equation with y = 1 evaluated at r = 2 cm.
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Fig. 3. Exact and approximate time-domain Green’s functions for the Chen-
Holm wave equation with y = 1 evaluated at r = 3 cm.

are nearly identical when evaluated at distances of 1-5 cm.
Furthermore, the exact and approximate expressions provided
in Eqs. 12 and 13, respectively, are causal. The Chen-Holm
wave equation, which is the only known fractional wave equa-
tion that is causal for y = 1, provides an additional advantage
in that exact and approximate analytical time-domain Green’s
function are available for numerical computations in the time-
domain. The main difference between this and other time-
domain Green’s functions developed for medical ultrasound
[4], [5], [6], [9], [10] is that the Chen-Holm space-fractional
wave equation is nondispersive.
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Fig. 4. Exact and approximate time-domain Green’s functions for the Chen-
Holm wave equation with y = 1 evaluated at r = 4 cm.
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Fig. 5. Exact and approximate time-domain Green’s functions for the Chen-
Holm wave equation with y = 1 evaluated at r = 5 cm.
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