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Abstract—The key objective of this work has been to detect
and classify different types of flaws encountered in ultrasonic
Non-Destructive Testing (NDT) applications. The flaws that are
examined for classification are Side Drilled Hole, Flat Bottom
Hole, and Rectangular voids with different aspect ratios. Manual
inspection of ultrasonic images is often inadequate for classifica-
tion purposes since it is difficult to visually discriminate the flaws
due to their similarities. In particular, voids and holes closer
to the edge boundaries (i.e. front or bottom of the structure)
make this task especially challenging. We propose to use deep-
learning methods to automate the ultrasonic flaw classification.
In the proposed setup, the specimen under test is a steel block
and immersion based ultrasonic testing has been considered.
OnScale multiphysics simulation software has been used for
data synthesis and a Convolutional Neural Network based deep
learning method has been developed to classify the flaws with one
hot encoding method. Preliminary results have been promising
with the average classification accuracy of 90%, 93%, 95%
and 91% for flat bottom hole, rectangular void with greater
width, side drilled hole and rectangular void with greater length,
respectively.
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I. INTRODUCTION

Classification of flaws and material characterization have
been been conducted using traditional signal and image
processing techniques, as can be seen in [1], [2] and [3].
However, the advent of Industry 4.0 has called for integration
of various technologies such as Internet of Things (IoT)
and Artificial Intelligence(AI) / Data sciences [4], [5]. In
this regard, it is essential to integrate smart algorithms that
can help in achieving automation for detection of flaws
or locating voids/holes. For example, the latter case is
particularly crucial for assembling two components that need
to be precisely positioned into the grooves. Our earlier work
on binary classification of ultrasonic flaws have introduced

multiple machine learning and deep learning algorithms
[6], [7], [8] and [9]. These algorithms range from a linear
classifier such as Support Vector Machines [6] to deep
learning networks based on Le-Net architecture [9]. While
flaw detection performance goals have been met with these
proposed methods, classification of flaw types present a
more complex task and may require a different approach.
Several research initiatives have been carried out already for
automation of defect classification using shallow learning
techniques [10], [11], [12]. In this study, we aim to introduce
a new deep learning network for ultrasonic flaw classification.
A convolutional neural network (CNN) is proposed since it
has been shown to work on ultrasonic images with minimum
feature analysis or feature extraction needed [9].

Organization of this paper is as follows: The details of the
data synthesis with OnScale software tool, testing setup and
B-scan intensity images are presented in Section II. Section
III introduces the new CNN architecture used in this work.
System validation and testing results with preliminary data
are discussed in Section IV and Section V.

II. ULTRASONIC DATA SYNTHESIS

An immersion test setup with a specific type of void has
been simulated for this work as shown in Fig. 1. In Fig. 1,
the immersion liquid used is water and the metal block under
inspection is steel with a Side Drilled Hole. The transducer is
a sensor array operating at central frequency of 5 MHz. All
data synthesis have been performed using OnScale software
tools [13].
The voids that are being classified are listed below:
• Side Drilled Hole (SDH).
• Flat Bottom Hole (FBH).
• Rectangular Void with length greater than width

(RVLgW).
• Rectangular Void with width greater than length

(RVWgL).
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Fig. 1. Immersion setup with SDH using OnScale tools.

B-scan images corresponding to each flaw type are shown in
Fig. 2. It can be seen that each flaw has distinct response
but the position of the void influences the signature and it is
hard to classify shapes visually. When the holes or voids are
closer to the surface edges, classification task becomes further
difficult.

In these experiments, the B-scan image resolution was cho-
sen to be 427 x 1500. The x dimension represents the position
of the scan and y dimension represents the time sampling.
These images are fed into the neural network classifier as
input features. A dataset of 400 B-scans has been created
and each flaw class contain 100 samples. The resolution of
B-scan images are high and has been down-sampled to 50x50
resolution which has yielded the best validation results with a
training time of less than 30 seconds per epoch.

III. VHC-CNN ARCHITECTURE

Several CNN architectures have been explored during the
development process and the specific architecture with three
ConvNet layers presented in Table I has been chosen due to
its high validation accuracy. It is called Void Hole Classifier -
CNN (VHC-CNN). The graphical overview of the architecture
is shown in Fig. 3 and the details of the individual layers are
listed in Table I. ADAM optimizer with a learning rate of 0.005
has been used. The output is chosen to be one hot encoded.

IV. TRAINING VALIDATION

The dataset has been split into training, validation and
testing sets. The split ratio is 4:1:5 on the entire data set for
the training, validation and testing, respectively. Data crunch
and overfitting posed a problem but this was overcome by
increasing the training and validation dataset. The existing
data set was rotated 6 times at incremental steps of 30
degrees and augmented to existing dataset. Therefore, the
total amount of data for training was 1120. Similar approach
was adopted for validation data set. The algorithm has been
implemented with Keras Python Deep Learning library [14],
running on top of the TensorFlow framework and Nvidia
Tesla GPUs.

Validation provides initial look at the machine learning
performance after training CNN at the end of each epoch.

Fig. 2. B-Scan images for different flaw classes.

TABLE I
VHC-CNN DETAILS

Layer Name Output Size No of Parameters
batch normalization 1 (None, 50, 50, 1) 4
conv2d 1 (Conv2D) (None, 50, 50, 8) 208

batch normalization 2 (None, 50, 50, 8) 32
activation 1 (Activation) (None, 50, 50, 8) 0

max pooling2d 1 (None, 25, 25, 8) 0
conv2d 2 (Conv2D) (None, 25, 25, 16) 3216

batch normalization 2 (None, 25, 25, 16) 64
activation 2 (Activation) (None, 25, 25, 16) 0

max pooling2d 2 (None, 12, 12, 32) 0
conv2d 3 (Conv2D) (None, 12, 12, 32) 4640

batch normalization 3 (None, 12, 12, 32) 128
activation 3 (Activation) (None, 12, 12, 32) 0

max pooling2d 3 (None, 6, 6, 64) 0
flatten 1 (Flatten) (None, 1152) 0
dense 1 (Dense) (None, 1024) 1180672
dense 2 (Dense) (None, 128) 131200
dense 3 (Dense) (None, 64) 8256
dense 4 (Dense) (None, 4) 260

During training/optimization, it is critical to keep check on
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Fig. 3. VHC-CNN architecture.

the convergence and this is accomplished by checking the
validation accuracy. The overall validation accuracy has been
at an average of 95%. The validation accuracy for each class
has been listed in the Table II.

TABLE II
VALIDATION ACCURACY

Flaw Accuracy
FBH 92%

RVWgL 95%
SDH 97%

RVLgW 94%

It can be seen from the validation results that the side drilled
hole is the easiest void type to classify, while flat bottom
hole is the hardest for classification. The test results presented
in the next section corroborate with the validation accuracy
performance.

V. MULTI-CLASS CLASSIFICATION RESULTS

The test results for each void type have been presented
in Fig. 4. They confirm the validation results. The overall
average accuracy is above 90%. The miss-classification cases
and performance analysis can be seen in the Table III. The
table gives the entire confusion matrix. It can be seen that
the highest miss-classification ratio is 5% (FBH incorrectly
identified as RVLgW).

VI. CONCLUSION AND FUTURE WORK

This work has demonstrated that deep learning methods
such as CNN can be used in Ultrasonic NDT applications
wherein flaw/defect shapes need to be identified. Preliminary
results show that it is harder to detect the FBH voids but this
can be improved by expanding the training set by simulating a

Fig. 4. Average Multi-Class Test Accuracy

TABLE III
CONFUSION MATRIX

Inference FBH RVWgL SDH RVLgW
Actual Class

FBH (100 total) 90 3 2 5
RVWgL (100 total) 2 93 2 3

SDH (100 total) 2 1 95 2
RVLgW(100 total) 5 2 2 91

wide range of different scenarios. Another important outcome
is that the proposed CNN architecture can distinguish between
Flat Bottom Hole and Rectangular Voids even when they
have similar dimensions (same aspect ratio). CNN was able
to achieve average accuracy of above 90% in both the cases.
For future work, further analysis on the proximity limit of the
void or hole to the edge boundaries is necessary for enhancing
the performance of VHC-CNN architecture.
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